2022年+九年级数学中考复习+压轴解答题+专题突破训练
展开这是一份2022年+九年级数学中考复习+压轴解答题+专题突破训练,共57页。试卷主要包含了问题背景,已知等内容,欢迎下载使用。
2022年春九年级数学中考二轮复习《压轴解答题》专题训练(附答案)
1.如图①,△ABC中,∠ABC=45°,AH⊥BC于点H,点D在AH上,且DH=CH,连接BD.
(1)求证:BD=AC;
(2)将△BHD绕点H旋转,得到△EHF(点B,D分别与点E,F对应),连接AE.
①如图②,当点F落在AC上时,(F不与C重合),若BC=4,tanC=3,求AE的长;
②如图③,当△EHF是由△BHD绕点H逆时针旋转30°得到时,设射线CF与AE相交于点G,连接GH,试探究线段GH与EF之间满足的等量关系,并说明理由.
2.已知AC,EC分别是四边形ABCD和EFCG的对角线,点E在△ABC内,∠CAE+∠CBE=90°.
(1)如图①,当四边形ABCD和EFCG均为正方形时,连接BF.
(i)求证:△CAE∽△CBF;
(ii)若BE=1,AE=2,求CE的长;
(2)如图②,当四边形ABCD和EFCG均为矩形,且==k时,若BE=1,AE=2,CE=3,求k的值;
(3)如图③,当四边形ABCD和EFCG均为菱形,且∠DAB=∠GEF=45°时,设BE=m,AE=n,CE=p,试探究m,n,p三者之间满足的等量关系.(直接写出结果,不必写出解答过程)
3.问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是==;
迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.
①求证:△ADB≌△AEC;
②请直接写出线段AD,BD,CD之间的等量关系式;
拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.
①证明△CEF是等边三角形;
②若AE=5,CE=2,求BF的长.
4.在Rt△ABC中,∠ACB=90°,AB=,AC=2,过点B作直线m∥AC,将△ABC绕点C顺时针旋转得到△A′B′C(点A,B的对应点分别为A',B′),射线CA′,CB′分别交直线m于点P,Q.
(1)如图1,当P与A′重合时,求∠ACA′的度数;
(2)如图2,设A′B′与BC的交点为M,当M为A′B′的中点时,求线段PQ的长;
(3)在旋转过程中,当点P,Q分别在CA′,CB′的延长线上时,试探究四边形PA'B′Q的面积是否存在最小值.若存在,求出四边形PA′B′Q的最小面积;若不存在,请说明理由.
5.如图1,在△ABC中,AB=AC=20,tanB=,点D为BC边上的动点(点D不与点B,C重合).以D为顶点作∠ADE=∠B,射线DE交AC边于点E,过点A作AF⊥AD交射线DE于点F,连接CF.
(1)求证:△ABD∽△DCE;
(2)当DE∥AB时(如图2),求AE的长;
(3)点D在BC边上运动的过程中,是否存在某个位置,使得DF=CF?若存在,求出此时BD的长;若不存在,请说明理由.
6.在Rt△ABC中,∠ACB=90°,AB=5,BC=3,将△ABC绕点B顺时针旋转得到△A′BC′,其中点A,C的对应点分别为点A′,C′.
(1)如图1,当点A′落在AC的延长线上时,求AA′的长;
(2)如图2,当点C′落在AB的延长线上时,连接CC′,交A′B于点M,求BM的长;
(3)如图3,连接AA′,CC′,直线CC′交AA′于点D,点E为AC的中点,连接DE.在旋转过程中,DE是否存在最小值?若存在,求出DE的最小值;若不存在,请说明理由.
7.如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F.切点为G,连接AG交CD于K.
(1)求证:KE=GE;
(2)若KG2=KD•GE,试判断AC与EF的位置关系,并说明理由;
(3)在(2)的条件下,若sinE=,AK=,求FG的长.
8.已知:如图,以矩形ABCD的对角线AC的中点O为圆心,OA长为半径作⊙O,⊙O经过B、D两点,过点B作BK⊥AC,垂足为K.过D作DH∥KB,DH分别与AC、AB、⊙O及CB的延长线相交于点E、F、G、H.
(1)求证:AE=CK;
(2)如果AB=a,AD=(a为大于零的常数),求BK的长:
(3)若F是EG的中点,且DE=6,求⊙O的半径和GH的长.
9.如图,A是以BC为直径的⊙O上一点,于点D,AD⊥BC过点B作⊙O的切线,与CA的延长线相交于点E,G是AD的中点,连接CG并延长与BE相交于点F,延长AF与CB的延长线相交于点P.
(1)求证:BF=EF;
(2)求证:PA是⊙O的切线;
(3)若FG=BF,且⊙O的半径长为,求BD和FG的长度.
10.已知:如图,△ABC内接于⊙O,AB为直径,弦CE⊥AB于F,C是的中点,连接BD并延长交EC的延长线于点G,连接AD,分别交CE、BC于点P、Q.
(1)求证:P是△ACQ的外心;
(2)若,求CQ的长;
(3)求证:(FP+PQ)2=FP•FG.
11.已知:如图,AB为⊙O的直径,C是BA延长线上一点,CP切⊙O于P,弦PD⊥AB于E,过点B作BQ⊥CP于Q,交⊙O于H,G是上一点,且,连接AG交PD于F,连接BF,若PD=,tan∠BFE=.
求:(1)∠C的度数;
(2)QH的长.
12.如图,在⊙O的内接△ABC中,∠ACB=90°,AC=2BC,过C作AB的垂线l交⊙O于另一点D,垂足为E.设P是上异于A,C的一个动点,射线AP交l于点F,连接PC与PD,PD交AB于点G.
(1)求证:△PAC∽△PDF;
(2)若AB=5,=,求PD的长;
(3)在点P运动过程中,设=x,tan∠AFD=y,求y与x之间的函数关系式.(不要求写出x的取值范围)
13.如图,在平面直角坐标系xOy中,抛物线y=a(x+1)2﹣3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C(0,﹣),顶点为D,对称轴与x轴交于点H,过点H的直线l交抛物线于P,Q两点,点Q在y轴的右侧.
(1)求a的值及点A,B的坐标;
(2)当直线l将四边形ABCD分为面积比为3:7的两部分时,求直线l的函数表达式;
(3)当点P位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN能否为菱形?若能,求出点N的坐标;若不能,请说明理由.
14.如图,已知抛物线y=(x+2)(x﹣4)(k为常数,且k>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y=﹣x+b与抛物线的另一交点为D.
(1)若点D的横坐标为﹣5,求抛物线的函数表达式;
(2)若在第一象限内的抛物线上有点P,使得以A,B,P为顶点的三角形与△ABC相似,求k的值;
(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?
15.如图,在平面直角坐标系xOy中,抛物线y=a(x﹣h)2+k与x轴相交于O,A两点,顶点P的坐标为(2,﹣1).点B为抛物线上一动点,连接AP,AB,过点B的直线与抛物线交于另一点C.
(1)求抛物线的函数表达式;
(2)若点B的横坐标与纵坐标相等,∠ABC=∠OAP,且点C位于x轴上方,求点C的坐标;
(3)若点B的横坐标为t,∠ABC=90°,请用含t的代数式表示点C的横坐标,并求出当t<0时,点C的横坐标的取值范围.
16.在平面直角坐标系xOy中,已知抛物线y=ax2+bx+c与x轴交于A(﹣1,0),B(4,0)两点,与y轴交于点C(0,﹣2).
(1)求抛物线的函数表达式;
(2)如图1,点D为第四象限抛物线上一点,连接AD,BC交于点E,连接BD,记△BDE的面积为S1,△ABE的面积为S2,求的最大值;
(3)如图2,连接AC,BC,过点O作直线l∥BC,点P,Q分别为直线l和抛物线上的点.试探究:在第一象限是否存在这样的点P,Q,使△PQB∽△CAB?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.
17.如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点 C.
(1)直接写出抛物线的解析式为: ;
(2)点D为第一象限内抛物线上的一动点,作DE⊥x轴于点E,交BC于点F,过点F作BC的垂线与抛物线的对称轴和y轴分别交于点G,H,设点D的横坐标为m.
①求DF+HF的最大值;
②连接EG,若∠GEH=45°,求m的值.
18.如图,经过定点A的直线y=k(x﹣2)+1(k<0)交抛物线y=﹣x2+4x于B,C两点(点C在点B的右侧),D为抛物线的顶点.
(1)直接写出点A的坐标;
(2)如图(1),若△ACD的面积是△ABD面积的两倍,求k的值;
(3)如图(2),以AC为直径作⊙E,若⊙E与直线y=t所截的弦长恒为定值,求t的值.
19.如图,在平面直角坐标系xOy中,以直线x=对称轴的抛物线y=ax2+bx+c与直线l:y=kx+m(k>0)交于A(1,1),B两点,与y轴交于C(0,5),直线l与y轴交于点D.
(1)求抛物线的函数表达式;
(2)设直线l与抛物线的对称轴的交点为F,G是抛物线上位于对称轴右侧的一点,若=,且△BCG与△BCD面积相等,求点G的坐标;
(3)若在x轴上有且仅有一点P,使∠APB=90°,求k的值.
20.如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.
(1)求抛物线C的函数表达式;
(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.
(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.
21.如图,在平面直角坐标系xOy中,抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC.
(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);
(2)点E是直线l上方的抛物线上的一点,若△ACE的面积的最大值为,求a的值;
(3)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.
22.如图,在平面直角坐标系中,已知点B(﹣2,0),A(m,0)(﹣<m<0),以AB为边在x轴下方作正方形ABCD,点E是线段OD与正方形ABCD的外接圆除点D以外的另一个交点,连接BE与AD相交于点F.
(1)求证:BF=DO;
(2)设直线l是△BDO的边BO的垂直平分线,且与BE相交于点G.若G是△BDO的外心,试求经过B、F、O三点的抛物线的解析表达式;
(3)在(2)的条件下,在抛物线上是否存在点P,使该点关于直线BE的对称点在x轴上?若存在,求出所有这样的点的坐标;若不存在,请说明理由.
参考答案
1.解:(1)在Rt△AHB中,∠ABC=45°,
∴AH=BH,
在△BHD和△AHC中,
,
∴△BHD≌△AHC,
∴BD=AC,
(2)①如图,
在Rt△AHC中,
∵tanC=3,
∴=3,
设CH=x,
∴BH=AH=3x,
∵BC=4,
∴3x+x=4,
∴x=1,
∴AH=3,CH=1,
由旋转知,∠EHF=∠BHD=∠AHC=90°,EH=AH=3,CH=DH=FH,
∴∠EHF﹣∠AHF=∠AHC﹣∠AHF,
∴∠EHA=∠FHC,,
∴△EHA∽△FHC,
∴∠EAH=∠C,
∴tan∠EAH=tanC=3,
过点H作HP⊥AE,
∴HP=3AP,AE=2AP,
在Rt△AHP中,AP2+HP2=AH2,
∴AP2+(3AP)2=9,
∴AP=,
∴AE=;
②方法1、如图1,
∵△EHF是由△BHD绕点H逆时针旋转30°得到,
∴HD=HF,∠AHF=30°
∴∠CHF=90°+30°=120°,
由①有,△AEH和△FHC都为等腰三角形,
∴∠GAH=∠HCG=30°,
∴CG⊥AE,
∴点C,H,G,A四点共圆,
∴∠CGH=∠CAH,
设CG与AH交于点Q,
∵∠AQC=∠GQH,
∴△AQC∽△GQH,
∴,
∵△EHF是由△BHD绕点H逆时针旋转30°得到,
∴EF=BD,
由(1)知,BD=AC,
∴EF=AC
∴==2.
即:EF=2HG.
方法2、如图③,取EF的中点K,连接GK,HK,
由旋转知,∠EHF=90°,
∴EK=HK=EF,
由旋转知,∠CGE=∠AGC=90°,
∴EK=GK=EF,
∴HK=GK,
∵EK=HK,
∴∠FKG=2∠AEF,
∵EK=GK,
∴∠HKF=2∠HEF,
由旋转知,∠AHF=30°,
∴∠AHE=120°,
由(1)知,BH=AH,
∵BH=EH,
∴AH=EH,
∴∠AEH=30°,
∴∠HKG=∠FKG+∠HKF=2∠AEF+2∠HEF=2∠AEH=60°,
∴△HKG是等边三角形,
∴GH=GK,
∴EF=2GK=2GH,
即:EF=2GH.
2.(1)(i)证明:∵四边形ABCD和EFCG均为正方形,
∴,
∴∠ACB=∠ECF=45°,
∴∠ACE=∠BCF,
在△CAE和△CBF中,
,
∴△CAE∽△CBF.
(ii)解:∵△CAE∽△CBF,
∴∠CAE=∠CBF,,
又∵∠CAE+∠CBE=90°,
∴∠CBF+∠CBE=90°,
∴∠EBF=90°,
又∵,AE=2
∴,
∴,
∴EF2=BE2+BF2==3,
∴EF=,
∵CE2=2EF2=6,
∴CE=.
(2)如图②,连接BF,
∵==k,
∴BC=a,AB=ka,FC=b,EF=kb,
∴AC=,
CE==,
∴,∠ACE=∠BCF,
在△ACE和△BCF中,
,
∴△ACE∽△BCF,
∴,∠CAE=∠CBF,
又∵AE=2,
∴,
∴BF=,
∵∠CAE=∠CBF,∠CAE+∠CBE=90°,
∴∠CBE+∠CBF=90°,
∴∠EBF=90°,
∴EF2=BE2+BF2=1,
∵,
∴=,CE=3,
∴EF=,
∴1,
∴,
解得k=±,
∵==k>0,∴k=.
(3)连接BF,同理可得∠EBF=90°,过C点作CH⊥AB延长线于H,
∵四边形ABCD为菱形,
∴AB=BC,设AB=BC=x,
∵∠CBH=∠DAB=45°,∴BH=CH=x,
∴AC2=AH2+CH2=(x+x)2+(x)2,=(2+)x2,
∴AB2:BC2:AC2=1:1:(2+),
同理可得EF2:FC2:EC2=1:1:(2+),
∴EF2==,
在△ACE和△BCF中,
,
∴△ACE∽△BCF,
∴==2+,∠CAE=∠CBF,
又∵AE=n,
∴,
∵∠CAE=∠CBF,∠CAE+∠CBE=90°,
∴∠CBE+∠CBF=90°,
∴∠EBF=90°,
∴EF2=BE2+BF2,
∴,
∴(2)m2+n2=p2,
即m,n,p三者之间满足的等量关系是:(2)m2+n2=p2.
3.迁移应用:①证明:如图②
∵∠BAC=∠DAE=120°,
∴∠DAB=∠CAE,
在△DAB和△EAC中,
,
∴△DAB≌△EAC,
②解:结论:CD=AD+BD.
理由:如图2﹣1中,作AH⊥CD于H.
∵△DAB≌△EAC,
∴BD=CE,
在Rt△ADH中,DH=AD•cos30°=AD,
∵AD=AE,AH⊥DE,
∴DH=HE,
∴CD=DE+EC=2DH+BD=AD+BD.
拓展延伸:①证明:如图3中,作BH⊥AE于H,连接BE.
∵四边形ABCD是菱形,∠ABC=120°,
∴△ABD,△BDC是等边三角形,
∴BA=BD=BC,
∵E、C关于BM对称,
∴BC=BE=BD=BA,FE=FC,
∴A、D、E、C四点共圆,
∴∠ADC=∠AEC=120°,
∴∠FEC=60°,
∴△EFC是等边三角形,
②解:∵AE=5,EC=EF=2,
∴AH=HE=2.5,FH=4.5,
在Rt△BHF中,∵∠BFH=30°,
∴=cos30°,
∴BF==3.
4.解:(1)由旋转可得:AC=A'C=2,
∵∠ACB=90°,AB=,AC=2,
∴BC=,
∵∠ACB=90°,m∥AC,
∴∠A'BC=90°,
∴cos∠A'CB==,
∴∠A'CB=30°,
∴∠ACA'=60°;
(2)∵M为A'B'的中点,
∴∠A'CM=∠MA'C,
由旋转可得,∠MA'C=∠A,
∴∠A=∠A'CM,
∴tan∠PCB=tan∠A=,
∴PB=BC=,
∵∠PCQ=∠PBC=90°,
∴∠BQC+∠BPC=∠BCP+∠BPC=90°,
∴∠BQC=∠BCP=∠A,
∴tan∠BQC=tan∠A=,
∴BQ=BC×=2,
∴PQ=PB+BQ=;
(3)∵S四边形PA'B′Q=S△PCQ﹣S△A'CB'=S△PCQ﹣,
∴S四边形PA'B′Q最小,即S△PCQ最小,
∴S△PCQ=PQ×BC=PQ,
法一:(几何法)取PQ的中点G,
∵∠PCQ=90°,
∴CG=PQ,即PQ=2CG,
当CG最小时,PQ最小,
∴CG⊥PQ,即CG与CB重合时,CG最小,
∴CGmin=,PQmin=2,
∴S△PCQ的最小值=3,S四边形PA'B′Q=3﹣;
法二(代数法)设PB=x,BQ=y,
由射影定理得:xy=3,
∴当PQ最小时,x+y最小,
∴(x+y)2=x2+2xy+y2=x2+6+y2≥2xy+6=12,
当x=y=时,“=”成立,
∴PQ=+=2,
∴S△PCQ的最小值=3,S四边形PA'B′Q=3﹣.
5.(1)证明:∵AB=AC,
∴∠B=∠ACB,
∵∠ADE+∠CDE=∠B+∠BAD,∠ADE=∠B,
∴∠BAD=∠CDE,
∴△BAD∽△DCE.
(2)解:如图2中,作AM⊥BC于M.
在Rt△ABM中,设BM=4k,则AM=BM•tanB=4k×=3k,
由勾股定理,得到AB2=AM2+BM2,
∴202=(3k)2+(4k)2,
∴k=4或﹣4(舍弃),
∵AB=AC,AM⊥BC,
∴BC=2BM=2•4k=32,
∵DE∥AB,
∴∠BAD=∠ADE,
∵∠ADE=∠B,∠B=∠ACB,
∴∠BAD=∠ACB,
∵∠ABD=∠CBA,
∴△ABD∽△CBA,
∴=,
∴DB===,
∵DE∥AB,
∴=,
∴AE===.
(3)点D在BC边上运动的过程中,存在某个位置,使得DF=CF.
理由:作FH⊥BC于H,AM⊥BC于M,AN⊥FH于N.则∠NHM=∠AMH=∠ANH=90°,
∴四边形AMHN为矩形,
∴∠MAN=90°,MH=AN,
∵AB=AC,AM⊥BC,
∵AB=20,tanB=
∴BM=CM=16,
∴BC=32,
在Rt△ABM中,由勾股定理,得AM===12,
∵AN⊥FH,AM⊥BC,
∴∠ANF=90°=∠AMD,
∵∠DAF=90°=∠MAN,
∴∠NAF=∠MAD,
∴△AFN∽△ADM,
∴==tan∠ADF=tanB=,
∴AN=AM=×12=9,
∴CH=CM﹣MH=CM﹣AN=16﹣9=7,
当DF=CF时,由点D不与点C重合,可知△DFC为等腰三角形,
∵FH⊥DC,
∴CD=2CH=14,
∴BD=BC﹣CD=32﹣14=18,
∴点D在BC边上运动的过程中,存在某个位置,使得DF=CF,此时BD=18.
6.解:(1)∵∠ACB=90°,AB=5,BC=3,
∴AC==4,
∵∠ACB=90°,△ABC绕点B顺时针旋转得到△A′BC′,点A′落在AC的延长线上,
∴∠A'CB=90°,A'B=AB=5,
Rt△A'BC中,A'C==4,
∴AA'=AC+A'C=8;
(2)过C作CE∥A'B交AB于E,过C作CD⊥AB于D,如图:
∵△ABC绕点B顺时针旋转得到△A′BC′,
∴∠A'BC=∠ABC,BC'=BC=3,
∵CE∥A'B,
∴∠A'BC'=∠CEB,
∴∠CEB=∠ABC,
∴CE=BC=3,
Rt△ABC中,S△ABC=AC•BC=AB•CD,AC=4,BC=3,AB=5,
∴CD==,
Rt△CED中,DE===,
同理BD=,
∴BE=DE+BD=,C'E=BC'+BE=3+=,
∵CE∥A'B,
∴=,
∴=,
∴BM=;
(3)DE存在最小值1,理由如下:
过A作AP∥A'C'交C'D延长线于P,连接A'C,如图:
∵△ABC绕点B顺时针旋转得到△A′BC′,
∴BC=BC',∠ACB=∠A'C'B=90°,AC=A'C',
∴∠BCC'=∠BC'C,
而∠ACP=180°﹣∠ACB﹣∠BCC'=90°﹣∠BCC',
∠A'C'D=∠A'C'B﹣∠BC'C=90°﹣∠BC'C,
∴∠ACP=∠A'C'D,
∵AP∥A'C',
∴∠P=∠A'C'D,
∴∠P=∠ACP,
∴AP=AC,
∴AP=A'C',
在△APD和△A'C'D中,
,
∴△APD≌△A'C'D(AAS),
∴AD=A'D,即D是AA'中点,
∵点E为AC的中点,
∴DE是△AA'C的中位线,
∴DE=A'C,
要使DE最小,只需A'C最小,此时A'、C、B共线,A'C的最小值为A'B﹣BC=AB﹣BC=2,
∴DE最小为A'C=1.
7.解:(1)如答图1,连接OG.
∵EG为切线,
∴∠KGE+∠OGA=90°,
∵CD⊥AB,
∴∠AKH+∠OAG=90°,
又∵OA=OG,
∴∠OGA=∠OAG,
∴∠KGE=∠AKH=∠GKE,
∴KE=GE.
(2)AC∥EF,理由为连接GD,如图2所示.
∵KG2=KD•GE,即=,
∴=,
又∵∠KGE=∠GKE,
∴△GKD∽△EGK,
∴∠E=∠AGD,
又∵∠C=∠AGD,
∴∠E=∠C,
∴AC∥EF;
(3)连接OG,OC,如图3所示,
∵EG为切线,
∴∠KGE+∠OGA=90°,
∵CD⊥AB,
∴∠AKH+∠OAG=90°,
又∵OA=OG,
∴∠OGA=∠OAG,
∴∠KGE=∠AKH=∠GKE,
∴KE=GE.
∵sinE=sin∠ACH=,设AH=3t,则AC=5t,CH=4t,
∵KE=GE,AC∥EF,
∴CK=AC=5t,
∴HK=CK﹣CH=t.
在Rt△AHK中,根据勾股定理得AH2+HK2=AK2,
即(3t)2+t2=(2)2,解得t=.
设⊙O半径为r,在Rt△OCH中,OC=r,OH=r﹣3t,CH=4t,
由勾股定理得:OH2+CH2=OC2,
即(r﹣3t)2+(4t)2=r2,解得r=t=.
∵EF为切线,
∴△OGF为直角三角形,
在Rt△OGF中,OG=r=,tan∠OFG=tan∠CAH==,
∴FG===.
8.(1)证明:∵四边形ABCD是矩形,
∴AD∥BC,AD=BC,
∴∠DAE=∠BCK,
∵BK⊥AC,DH∥KB,
∴∠BKC=∠AED=90°,
∴△BKC≌△ADE,
∴AE=CK;
(2)解:∵AB=a,AD==BC,
∴AC===
∵BK⊥AC,∠ABC=90°,
∴在Rt△ABC中,由三角形的面积公式得:AB×BC=AC×BK,
∴a×a=a×BK,
∴BK=a.
(3)解:DG是圆的弦,又有AE⊥GD得GE=ED,
∵DE=6,
∴GE=6,
又∵F为EG中点,
∴EF=EG=3,
∵△BKC≌△DEA,
∴BK=DE=6,
∴EF=BK,且EF∥BK,
∴△AEF∽△AKB,且相似比为1:2,
∴EF为△ABK的中位线,
∴AF=BF,
又∵∠ADF=∠H,∠DAF=∠HBF=90°,
∴△AFD≌△BFH(AAS),
∴HF=DF=3+6=9,
∴GH=6,
∵DH∥KB,BK⊥AC,四边形ABCD为矩形,
∴∠AEF=∠DEA=90°,
∴∠FAE+∠DAE=∠FAE+∠AFE=90°,
∴∠AFE=∠DAE,
∴△AEF∽△DEA,
∴AE:ED=EF:AE,
∴AE2=EF•ED=3×6=18,
∴AE=3,
∵△AED∽△HEC,
∴==,
∴AE=AC,
∴AC=9,
则AO=,
故⊙O的半径是,GH的长是6.
9.(1)证明:∵BC是⊙O的直径,BE是⊙O的切线,
∴EB⊥BC.
又∵AD⊥BC,
∴AD∥BE.
∵△BFC∽△DGC,△FEC∽△GAC,
∴.
∴.
∵G是AD的中点,
∴DG=AG.
∴BF=EF.
(2)证明:连接AO,AB,
∵BC是⊙O的直径,
∴∠BAC=90°.
在Rt△BAE中,由(1),知F是斜边BE的中点,
∴AF=FB=EF.
∴∠FBA=∠FAB.
又∵OA=OB,
∴∠ABO=∠BAO.
∵BE是⊙O的切线,
∴∠EBO=90°.
∵∠EBO=∠FBA+∠ABO=∠FAB+∠BAO=∠FAO=90°,
∴PA是⊙O的切线.
(3)解:过点F作FH⊥AD于点H,
∵BD⊥AD,FH⊥AD,
∴FH∥BC.
由(2),知∠FBA=∠BAF,
∴BF=AF.
由已知,有BF=FG,
∴AF=FG,即△AFG是等腰三角形.
∵FH⊥AD,
∴AH=GH.
∵DG=AG,
∴DG=2HG.
即.
∵FH∥BD,BF∥AD,∠FBD=90°,
∴四边形BDHF是矩形,BD=FH.
∵FH∥BC,易证△HFG∽△DCG,
∴.
即.
∵⊙O的半径长为3,
∴BC=6.
∴.
解得BD=2.
∴BD=FH=2.
∵,
∴CF=3FG.
在Rt△FBC中,
∵CF=3FG,BF=FG,
∴CF2=BF2+BC2∴(3FG)2=FG2+(6)2
解得FG=3(负值舍去)
∴FG=3.
10.(1)证明:∵C是的中点,∴,
∴∠CAD=∠ABC
∵AB是⊙O的直径,∴∠ACB=90°.
∴∠CAD+∠AQC=90°
又CE⊥AB,∴∠ABC+∠PCQ=90°
∴∠AQC=∠PCQ
∴在△PCQ中,PC=PQ,
∵CE⊥直径AB,∴
∴
∴∠CAD=∠ACE.
∴在△APC中,有PA=PC,
∴PA=PC=PQ
∴P是△ACQ的外心.
(2)解:∵CE⊥直径AB于F,
∴在Rt△BCF中,由tan∠ABC=,CF=8,
得.
∴由勾股定理,得BC==
∵AB是⊙O的直径,
∴在Rt△ACB中,由tan∠ABC==,BC=,
∴AC=10,
易知Rt△ACB∽Rt△QCA,
∴AC2=CQ•BC,
∴CQ==;
(3)证明:∵AB是⊙O的直径,∴∠ADB=90°
∴∠DAB+∠ABD=90°
又CF⊥AB,∴∠ABG+∠G=90°
∴∠DAB=∠G;
∴Rt△AFP∽Rt△GFB,
∴,即AF•BF=FP•FG
易知Rt△ACF∽Rt△CBF,
∴CF2=AF•BF(或由射影定理得)
∴FC2=PF•FG,
由(1),知PC=PQ,∴FP+PQ=FP+PC=FC
∴(FP+PQ)2=FP•FG.
11.解:(1)连接OP,则∠OPC=90°
∵
∴∠BAF=30°
设EF=x,则AE=x
∵tan∠BFE=
∴BE=3x
∴cos∠POA=OE:OP=
∴∠POA=60°
∵CP是切线
∴∠OPC=90°
∴∠C=30°;
(2)∵PD⊥AB,PD=,
∴PE=3,
∴CP=6,OP=6,
那么AB=2OP=12,
∵PC2=AC×BC,
∴AC=6,
∴BC=18,
∴QB=9,CQ=9,
∴PQ=3,
∵PQ2=QH×QB,
∴QH=3.
12.(1)证明:∵∠ACB=90°,
∴AB是直径,
又∵AB⊥CD,
∵,
∴∠DPF=180°﹣∠APD=180°﹣所对的圆周角=180°﹣所对的圆周角=所对的圆周角=∠APC.
在△PAC和△PDF中,
,
∴△PAC∽△PDF.
(2)解:如图1,连接PO,则由,有PO⊥AB,且∠PAB=45°,△APO、△AEF都为等腰直角三角形.
在Rt△ABC中,
∵AC=2BC,
∴AB2=BC2+AC2=5BC2,
∵AB=5,
∴BC=,
∴AC=2,
∴CE=AC•sin∠BAC=AC•=2•=2,
AE=AC•cos∠BAC=AC•=2•=4,
∵△AEF为等腰直角三角形,
∴EF=AE=4,
∴FD=FC+CD=(EF﹣CE)+2CE=EF+CE=4+2=6.
∵△APO为等腰直角三角形,AO=•AB=,
∴AP=.
∵△PDF∽△PAC,
∴,
∴,
∴PD=.
(3)解:如图2,过点G作GH⊥AB,交AC于H,连接HB,以HB为直径作圆,连接CG并延长交⊙O于Q,
∵HC⊥CB,GH⊥GB,
∴C、G都在以HB为直径的圆上,
∴∠HBG=∠ACQ,
∵C、D关于AB对称,G在AB上,
∴Q、P关于AB对称,
∴,
∴∠PCA=∠ACQ,
∴∠HBG=∠PCA.
∵△PAC∽△PDF,
∴∠PCA=∠PFD=∠AFD,
∴y=tan∠AFD=tan∠PCA=tan∠HBG=.
∵HG=tan∠HAG•AG=tan∠BAC•AG==,
∴y==x.
13.解:(1)∵抛物线与y轴交于点C(0,﹣).
∴a﹣3=﹣,解得:a=,
∴y=(x+1)2﹣3
当y=0时,有(x+1)2﹣3=0,
∴x1=2,x2=﹣4,
∴A(﹣4,0),B(2,0).
(2)∵A(﹣4,0),B(2,0),C(0,﹣),D(﹣1,﹣3)
∴S四边形ABCD=S△ADH+S梯形OCDH+S△BOC=×3×3+(+3)×1+×2×=10.
从面积分析知,直线l只能与边AD或BC相交,所以有两种情况:
①当直线l边AD相交与点M1时,则=×10=3,
∴×3×(﹣)=3
∴=﹣2,点M1(﹣2,﹣2),过点H(﹣1,0)和M1(﹣2,﹣2)的直线l的解析式为y=2x+2.
②当直线l边BC相交与点M2时,同理可得点M2(,﹣2),过点H(﹣1,0)和M2(,﹣2)的直线l的解析式为y=﹣x﹣.
综上所述:直线l的函数表达式为y=2x+2或y=﹣x﹣.
(3)设P(x1,y1)、Q(x2,y2)且过点H(﹣1,0)的直线PQ的解析式为y=kx+b,
∴﹣k+b=0,
∴b=k,
∴y=kx+k.
由,
∴+(﹣k)x﹣﹣k=0,
∴x1+x2=﹣2+3k,y1+y2=kx1+k+kx2+k=3k2,
∵点M是线段PQ的中点,
根据中点坐标公式得M(,),
∴点M(k﹣1,k2).
假设存在这样的N点如图,直线DN∥PQ,设直线DN的解析式为y=kx+k﹣3
由,解得:x1=﹣1,x2=3k﹣1,∴N(3k﹣1,3k2﹣3)
∵四边形DMPN是菱形,
∴DN=DM,
∴(3k)2+(3k2)2=()2+()2,
整理得:3k4﹣k2﹣4=0,
∵k2+1>0,
∴3k2﹣4=0,
解得k=±,
∵k<0,
∴k=﹣,
∴P(﹣3﹣1,6),M(﹣﹣1,2),N(﹣2﹣1,1)
∴PM=DN=2,
∵PM∥DN,
∴四边形DMPN是平行四边形,
∵DM=DN,
∴四边形DMPN为菱形,
∴以DP为对角线的四边形DMPN能成为菱形,此时点N的坐标为(﹣2﹣1,1).
14.解:(1)抛物线y=(x+2)(x﹣4),
令y=0,解得x=﹣2或x=4,
∴A(﹣2,0),B(4,0).
∵直线y=﹣x+b经过点B(4,0),
∴﹣×4+b=0,解得b=,
∴直线BD解析式为:y=﹣x+.
当x=﹣5时,y=3,
∴D(﹣5,3).
∵点D(﹣5,3)在抛物线y=(x+2)(x﹣4)上,
∴(﹣5+2)(﹣5﹣4)=3,
∴k=.
∴抛物线的函数表达式为:y=(x+2)(x﹣4).
即y=x2﹣x﹣.
(2)由抛物线解析式,令x=0,得y=﹣k,
∴C(0,﹣k),OC=k.
因为点P在第一象限内的抛物线上,所以∠ABP为钝角.
因此若两个三角形相似,只可能是△ABC∽△APB或△ABC∽△PAB.
①若△ABC∽△APB,则有∠BAC=∠PAB,如答图2﹣1所示.
设P(x,y),过点P作PN⊥x轴于点N,则ON=x,PN=y.
tan∠BAC=tan∠PAB,即:,
∴y=x+k.
∴P(x,x+k),代入抛物线解析式y=(x+2)(x﹣4),
得(x+2)(x﹣4)=x+k,整理得:x2﹣6x﹣16=0,
解得:x=8或x=﹣2(与点A重合,舍去),
∴P(8,5k).
∵△ABC∽△APB,
∴,即,
解得:k=.
②若△ABC∽△PAB,则有∠ABC=∠PAB,如答图2﹣2所示.
设P(x,y),过点P作PN⊥x轴于点N,则ON=x,PN=y.
tan∠ABC=tan∠PAB,即:=,
∴y=x+.
∴P(x,x+),代入抛物线解析式y=(x+2)(x﹣4),
得(x+2)(x﹣4)=x+,整理得:x2﹣4x﹣12=0,
解得:x=6或x=﹣2(与点A重合,舍去),
∴P(6,2k).
∵△ABC∽△PAB,
=,
∴=,
解得k=±,
∵k>0,
∴k=,
综上所述,k=或k=.
(3)方法一:
如答图3,由(1)知:D(﹣5,3),
如答图2﹣2,过点D作DN⊥x轴于点N,则DN=3,ON=5,BN=4+5=9,
∴tan∠DBA===,
∴∠DBA=30°.
过点D作DK∥x轴,则∠KDF=∠DBA=30°.
过点F作FG⊥DK于点G,则FG=DF.
由题意,动点M运动的路径为折线AF+DF,运动时间:t=AF+DF,
∴t=AF+FG,即运动的时间值等于折线AF+FG的长度值.
由垂线段最短可知,折线AF+FG的长度的最小值为DK与x轴之间的垂线段.
过点A作AH⊥DK于点H,则t最小=AH,AH与直线BD的交点,即为所求之F点.
∵A点横坐标为﹣2,直线BD解析式为:y=﹣x+,
∴y=﹣×(﹣2)+=2,
∴F(﹣2,2).
综上所述,当点F坐标为(﹣2,2)时,点M在整个运动过程中用时最少.
方法二:
作DK∥AB,AH⊥DK,AH交直线BD于点F,
∵∠DBA=30°,
∴∠BDH=30°,
∴FH=DF×sin30°=,
∴当且仅当AH⊥DK时,AF+FH最小,
点M在整个运动中用时为:t=,
∵lBD:y=﹣x+,
∴FX=AX=﹣2,
∴F(﹣2,).
15.解:(1)∵抛物线y=a(x﹣h)2+k,顶点P的坐标为(2,﹣1),
∴h=2,k=﹣1,即抛物线y=a(x﹣h)2+k为y=a(x﹣2)2﹣1,
∵抛物线y=a(x﹣h)2+k经过O,即y=a(x﹣2)2﹣1的图象过(0,0),
∴0=a(0﹣2)2﹣1,解得a=,
∴抛物线的函数表达为y=(x﹣2)2﹣1=x2﹣x;
(2)在y=x2﹣x中,令y=x得x=x2﹣x,
解得x=0或x=8,
∴B(0,0)或B(8,8),
①当B(0,0)时,过B作BC∥AP交抛物线于C,此时∠ABC=∠OAP,如图:
在y=x2﹣x中,令y=0,得x2﹣x=0,
解得x=0或x=4,
∴A(4,0),
设直线AP解析式为y=kx+b,将A(4,0)、P(2,﹣1)代入得:
,解得,
∴直线AP解析式为y=x﹣2,
∵BC∥AP,
∴设直线BC解析式为y=x+b',将B(0,0)代入得b'=0,
∴直线BC解析式为y=x,
由得(此时为点O,舍去)或,
∴C(6,3);
②当B(8,8)时,过P作PQ⊥x轴于Q,过B作BH⊥x轴于H,作H关于AB的对称点M,作直线BM交抛物线于C,连接AM,如图:
∵P(2,﹣1),A(4,0),
∴PQ=1,AQ=2,
Rt△APQ中,tan∠OAP==,
∵B(8,8),A(4,0),
∴AH=4,BH=8,
Rt△ABH中,tan∠ABH==,
∴∠OAP=∠ABH,
∵H关于AB的对称点M,
∴∠ABH=∠ABM,
∴∠ABM=∠OAP,即C是满足条件的点,
设M(x,y),
∵H关于AB的对称点M,
∴AM=AH=4,BM=BH=8,
∴,
两式相减变形可得x=8﹣2y,代入即可解得(此时为H,舍去)或,
∴M(,),
设直线BM解析式为y=cx+d,将M(,),B(8,8)代入得;
,解得,
∴直线BM解析式为y=x+2,
解得或(此时为B,舍去),
∴C(﹣1,),
综上所述,C坐标为(6,3)或(﹣1,);
(3)设BC交y轴于M,过B作BH⊥x轴于H,过M作MN⊥BH于N,如图:
∵点B的横坐标为t,
∴B(t,t2﹣t),又A(4,0),
∴AH=|t﹣4|,BH=|t2﹣t|,OH=|t|=MN,
∵∠ABC=90°,
∴∠MBN=90°﹣∠ABH=∠BAH,
且∠N=∠AHB=90°,
∴△ABH∽△BMN,
∴=,即=
∴BN==4,
∴NH=t2﹣t+4,
∴M(0,t2﹣t+4),
设直线BM解析式为y=ex+t2﹣t+4,
将B(t,t2﹣t)代入得t2﹣t=et+t2﹣t+4,
∴e=﹣,
∴直线BC解析式为y=﹣x+t2﹣t+4,
由得,
解得x1=t(B的横坐标),x2=﹣=﹣t﹣+4,
∴点C的横坐标为﹣t﹣+4;
当t<0时,
xC=﹣t﹣+4
=()2+()2+4
=(﹣)2+12,
∴=时,xC最小值是12,此时t=﹣4,
∴当t<0时,点C的横坐标的取值范围是xC≥12.
16.解:(1)设抛物线的解析式为y=a(x+1)(x﹣4).
∵将C(0,﹣2)代入得:4a=2,解得a=,
∴抛物线的解析式为y=(x+1)(x﹣4),即y=x2﹣x﹣2.
(2)过点D作DG⊥x轴于点G,交BC于点F,过点A作AK⊥x轴交BC的延长线于点K,
∴AK∥DG,
∴△AKE∽△DFE,
∴,
∴,
设直线BC的解析式为y=kx+b1,
∴,解得,
∴直线BC的解析式为y=x﹣2,
∵A(﹣1,0),
∴y=﹣﹣2=﹣,
∴AK=,
设D(m,m﹣2),则F(m,m﹣2),
∴DF=m+2=﹣+2m.
∴m=﹣.
∴当m=2时,有最大值,最大值是.
(3)存在.符合条件的点P的坐标为()或().
∵l∥BC,
∴直线l的解析式为y=x,
设P(a1,),
①当点P在直线BQ右侧时,如图2,过点P作PN⊥x轴于点N,过点Q作QM⊥直线PN于点M,
∵A(﹣1,0),C(0,﹣2),B(4,0),
∴AC=,AB=5,BC=2,
∵AC2+BC2=AB2,
∴∠ACB=90°,
∵△PQB∽△CAB,
∴,
∵∠QMP=∠BNP=90°,
∴∠MQP+∠MPQ=90°,∠MPQ+∠BPN=90°,
∴∠MQP=∠BPN,
∴△QPM∽△PBN,
∴=,
∴QM=,PM=(a1﹣4)=a1﹣2,
∴MN=a1﹣2,BN﹣QM=a1﹣4﹣=a1﹣4,
∴Q(a1,a1﹣2),
将点Q的坐标代入抛物线的解析式得﹣2=a1﹣2,
解得a1=0(舍去)或a1=.
∴P().
②当点P在直线BQ左侧时,
由①的方法同理可得点Q的坐标为(a1,2).
此时点P的坐标为().
17.解:(1)将点A(﹣1,0),B(3,0)代入抛物线y=﹣x2+bx+c得:
,
解得:,
∴抛物线的解析式为:y=﹣x2+2x+3.
故答案为:y=﹣x2+2x+3;
(2)①当x=0时,y=﹣x2+2x+3=3,
∴点C(0,3),
又∵B(3,0),
∴直线BC的解析式为:y=﹣x+3,
∵OB=OC=3,
∴∠OBC=∠OCB=45°,
作FK⊥y轴于点K,
又∵FH⊥BC,
∴∠KFH=∠KHF=45°,
∴FH=KF=OE,
∴DF+HF=DE﹣EF+OE
=(﹣m2+2m+3)﹣(﹣m+3)+m
=﹣m2+(3+)m,
由题意有0<m<3,且0<﹣=<3,﹣1<0,
∴当m=时,DF+HF取最大值,
DF+HF的最大值为:﹣+(3+)×=;
②作GM⊥y轴于点M,记直线FH与x轴交于点N,
∵FK⊥y轴,DE⊥x轴,∠KFH=45°,
∴∠EFH=∠ENF=45°,
∴EF=EN,
∵∠KHF=∠ONH=45°,
∴OH=ON,
∵y=﹣x2+2x+3的对称轴为直线x=1,
∴MG=1,
∵HG=MG=,
∵∠GEH=45°,
∴∠GEH=∠EFH,
又∠EHF=∠GHE,
∴△EHG∽△FHE,
∴HE:HG=HF:HE,
∴HE2=HG•HF
=×m
=2m,
在Rt△OEH中,
OH=ON
=|OE﹣EN|
=|OE﹣EF|
=|m﹣(﹣m+3)|
=|2m﹣3|,
OE=m,
∴HE2=OE2+OH2
=m2+(2m﹣3)2
=5m2﹣12m+9,
∴5m2﹣12m+9=2m,
解得:m=1或.
18.解:(1)∵A为直线y=k(x﹣2)+1上的定点,
∴A的坐标与k无关,
∴x﹣2=0,
∴x=2,此时y=1,
∴点A的坐标为(2,1);
(2)∵y=﹣x2+4x
=﹣(x﹣2)2+4,
∴顶点D的坐标为(2,4),
∵点A的坐标为(2,1),
∴AD⊥x轴.
如图(1),分别过点B,C作直线AD的垂线,垂足分别为M,N,设B,C的横坐标分别为x1,x2,
∵△ACD的面积是△ABD面积的两倍,
∴CN=2BM,
∴x2﹣2=2(2﹣x1),
∴2x1+x2=6.
联立,得x2+(k﹣4)x﹣2k+1=0,①
解得x1=,x2=,
∴2×+=6,
化简得:=﹣3k,
解得k=﹣.
另解:接上解,由①得x1+x2=4﹣k,
又由2x1+x2=6,得x1=2+k.
∴(2+k)2+(k﹣4)(2+k)﹣2k+1=0,
解得k=±.
∵k<0,
∴k=﹣;
(3)如图(2),设⊙E与直线y=t交于点G,H,点C的坐标为(a,﹣a2+4a).
∵E是AC的中点,
∴将线段AE沿AC方向平移与EC重合,
∴xE﹣xA=xC﹣xE,yE﹣yA=yC﹣yE,
∴xE=(xA+xC),yE=(yA+yC).
∴E(1+,).
分别过点E,A作x轴,y轴的平行线交于点F,在Rt△AEF中,由勾股定理得:
EA2=+
=+,
过点E作PE⊥GH,垂足为P,连接EH,
∴GH=2PH,EP2=,
又∵AE=EH,
∴GH2=4PH2
=4(EH2﹣EP2)
=4(EA2﹣EP2)
=4[+﹣]
=4[﹣a+1+﹣(﹣a2+4a+1)+1﹣+t(﹣a2+4a+1)﹣t2]
=4[(﹣t)a2+(4t﹣5)a+1+t﹣t2].
∵GH的长为定值,
∴﹣t=0,且4t﹣5=0,
∴t=.
19.解:(1)由题意可得,
解得a=1,b=﹣5,c=5;
∴二次函数的解析式为:y=x2﹣5x+5,
(2)作AM⊥x轴,BN⊥x轴,垂足分别为M,N,设对称轴交x轴于Q.
则,
∵MQ=,
∴NQ=2,B(,);
∴,
解得,
∴,D(0,),
同理可求,,
∵S△BCD=S△BCG,
∴①DG∥BC(G在BC下方),,
∴=x2﹣5x+5,
解得,,x2=3,
∵x>,
∴x=3,
∴G(3,﹣1).
②G在BC上方时,直线G2G3与DG1关于BC对称,
∴=,
∴=x2﹣5x+5,
解得,,
∵x>,
∴x=,
∴G(,),
综上所述点G的坐标为G(3,﹣1),G(,).
(3)由题意可知:k+m=1,
∴m=1﹣k,
∴y1=kx+1﹣k,
∴kx+1﹣k=x2﹣5x+5,
解得x1=1,x2=k+4,
∴B(k+4,k2+3k+1),
如图,设AB中点为O′,
∵P点有且只有一个,
∴以AB为直径的圆与x轴只有一个交点,且P为切点,
∴O′P⊥x轴,
∴P为MN的中点,
∴P(,0),
∵△AMP∽△PNB,
∴,
∴AM•BN=PN•PM,
∴1×(k2+3k+1)=(k+4﹣)(),
∵k>0,
∴k==﹣1+.
20.解:(1)由题意抛物线的顶点D(0,4),A(﹣2,0),设抛物线的解析式为y=ax2+4,
把A(﹣2,0)代入可得a=﹣,
∴抛物线C的函数表达式为y=﹣x2+4.
(2)由题意抛物线C′的顶点坐标为(2m,﹣4),设抛物线C′的解析式为y=(x﹣2m)2﹣4,
由,消去y得到x2﹣2mx+2m2﹣8=0,
由题意,抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,
则有,解得2<m<2,
∴满足条件的m的取值范围为2<m<2.
(3)结论:四边形PMP′N能成为正方形.
理由:情形1,如图,作PE⊥x轴于E,MH⊥x轴于H.
由题意易知P(2,2),当△PFM是等腰直角三角形时,四边形PMP′N是正方形,
∴PF=FM,∠PFM=90°,
易证△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,
∴M(m+2,m﹣2),
∵点M在y=﹣x2+4上,
∴m﹣2=﹣(m+2)2+4,解得m=﹣3或﹣﹣3(舍弃),
∴m=﹣3时,四边形PMP′N是正方形.
情形2,如图,四边形PMP′N是正方形,同法可得M(m﹣2,2﹣m),
把M(m﹣2,2﹣m)代入y=﹣x2+4中,2﹣m=﹣(m﹣2)2+4,解得m=6或0(舍弃),
∴m=6时,四边形PMP′N是正方形.
综上,四边形PMP′N能成为正方形,m=﹣3或6.
21.解:(1)令y=0,则ax2﹣2ax﹣3a=0,
解得x1=﹣1,x2=3
∵点A在点B的左侧,
∴A(﹣1,0),
如图1,作DF⊥x轴于F,
∴DF∥OC,
∴=,
∵CD=4AC,
∴==4,
∵OA=1,
∴OF=4,
∴D点的横坐标为4,
代入y=ax2﹣2ax﹣3a得,y=5a,
∴D(4,5a),
把A、D坐标代入y=kx+b得,
解得,
∴直线l的函数表达式为y=ax+a.
(2)如图1,过点E作EN⊥y轴于点N
设点E(m,a(m+1)(m﹣3)),yAE=k1x+b1,
则,
解得:,
∴yAE=a(m﹣3)x+a(m﹣3),M(0,a(m﹣3))
∵MC=a(m﹣3)﹣a,NE=m
∴S△ACE=S△ACM+S△CEM=[a(m﹣3)﹣a]+[a(m﹣3)﹣a]m=(m+1)[a(m﹣3)﹣a]=(m﹣)2﹣a,
∴有最大值﹣a=,
∴a=﹣;
(3)令ax2﹣2ax﹣3a=ax+a,即ax2﹣3ax﹣4a=0,
解得x1=﹣1,x2=4,
∴D(4,5a),
∵y=ax2﹣2ax﹣3a,
∴抛物线的对称轴为x=1,
设P1(1,m),
①若AD是矩形的一条边,
由AQ∥DP知|xD﹣xP|=|xA﹣xQ|,可知Q点横坐标为﹣4或6(6不符合题意,舍去),
将x=﹣4代入抛物线方程得Q(﹣4,21a),
m=yD+yQ=21a+5a=26a,则P(1,26a),
∵四边形ADPQ为矩形,∴∠ADP=90°,
∴AD2+PD2=AP2,
∵AD2=[4﹣(﹣1)]2+(5a)2=52+(5a)2,
PD2=(1﹣4)2+(26a﹣5a)2=32+(21a)2,
∴[4﹣(﹣1)]2+(5a)2+(1﹣4)2+(26a﹣5a)2=(﹣1﹣1)2+(26a)2,
即a2=,∵a<0,∴a=﹣,
∴P1(1,﹣).
②若AD是矩形的一条对角线,
则线段AD的中点坐标为(,),Q(2,﹣3a),
m=5a﹣(﹣3a)=8a,则P(1,8a),
∵四边形AQDP为矩形,∴∠APD=90°,
∴AP2+PD2=AD2,
∵AP2=[1﹣(﹣1)]2+(8a)2=22+(8a)2,
PD2=(4﹣1)2+(8a﹣5a)2=32+(3a)2,
AD2=[4﹣(﹣1)]2+(5a)2=52+(5a)2,
∴22+(8a)2+32+(3a)2=52+(5a)2,
解得a2=,∵a<0,∴a=﹣,
∴P2(1,﹣4).
综上可得,P点的坐标为P1(1,﹣4),P2(1,﹣).
22.(1)证明:在△ABF和△ADO中,
∵四边形ABCD是正方形,
∴AB=AD,∠BAF=∠DAO=90°.
又∵∠ABF=∠ADO,
∴△ABF≌△ADO,
∴BF=DO.
(2)解:由(1),有△ABF≌△ADO,
∵AO=AF=﹣m.
∴点F(m,m).
∵G是△BDO的外心,
∴点G在DO的垂直平分线上.
∴点B也在DO的垂直平分线上.
∴△DBO为等腰三角形,
∵AB=AD,
在Rt△BAD中,由勾股定理得:BO=BD=AB.
而|BO|=2,|AB|=|﹣2﹣m|=2+m,
∴2=(2+m),
∴m=2﹣2.
∴F(2﹣2,2﹣2).
设经过B,F,O三点的抛物线的解析表达式为y=ax2+bx+c(a≠0).
∵抛物线过点O(0,0),
∴c=0.
∴y=ax2+bx. ①
把点B(﹣2,0),点F(2﹣2,2﹣2)的坐标代入①中,
得
即
解得
∴抛物线的解析表达式为y=x2+x.②
(3)解:假定在抛物线上存在一点P,使点P关于直线BE的对称点P'在x轴上.
∵BE是∠OBD的平分线,
∴x轴上的点P'关于直线BE的对称点P必在直线BD上,
即点P是抛物线与直线BD的交点.
设直线BD的解析表达式为y=kx+b,并设直线BD与y轴交于点Q,则由△BOQ是等腰直角三角形.
∴|OQ|=|OB|.
∴Q(0,﹣2).
把点B(﹣2,0),点Q(0,﹣2)代入y=kx+b中,
得∴
∴直线BD的解析表达式为y=﹣x﹣2.
设点P(x0,y0),则有y0=﹣x0﹣2. ③
把③代入②,得x02+x0=﹣x0﹣2,
∴x02+(+1)x0+2=0,
即x02+2(+1)x0+4=0.
∴(x0+2)(x0+2)=0.
解得x0=﹣2或x0=﹣2.
当x0=﹣2时,y=﹣x0﹣2=2﹣2=0;
当x0=﹣2时,y0=﹣x0﹣2=2﹣2.
∴在抛物线上存在点P1(﹣2,0),P2(﹣2,2﹣2),它们关于直线BE的对称点都在x轴上.
相关试卷
这是一份2023年九年级中考数学解答题压轴题训练(一)+,共21页。
这是一份初中数学苏科版九年级下册5.1 二次函数课时练习,共53页。试卷主要包含了已知抛物线y=mx2﹣mx+1等内容,欢迎下载使用。
这是一份2023年中考数学专题复习《圆综合压轴题》解答题专题提升训练+,共33页。试卷主要包含了已知,如图,在△ABC中,AB=AC等内容,欢迎下载使用。