2022年中考数学复习考点专题训练:反比例函数
展开考点一、反比例函数相关概念
1. 若函数y=mxm2−5是反比例函数,且它的图象在第一、三象限,则m的值为( )
A.2 B.−2C.6 D.−6
2.函数是反比例函数,则的值是( )
A.-1 B.-2 C.2 D.2或-2
3. 下列数表中分别给出了变量y与x之间的对应关系,其中是反比例函数关系的是( )
A.B.
C.D.
考点二、反比例函数性质
1.若点A(a﹣1,y1),B(a+1,y2)在反比例函数y(k<0)的图象上,且y1>y2,则a的取值范围是( )
A.a<﹣1 B.﹣1<a<1 C.a>1 D.a<﹣1或a>1
2.若点A(﹣1,y1),B(2,y2),C(3,y3)在反比例函数y的图象上,则y1,y2,y3的大小关系是( )
A.y1>y2>y3B.y2>y3>y1C.y1>y3>y2D.y3>y2>y1
3.在反比例函数图象上有两点A(x1,y1)、B(x2,y2),x1<0<y1,y1<y2,则m的取值范围是( )
A.m>B.m< C.m≥D.m≤
4.已知y是x的反比例函数,当x>0时,y随x的增大而减小.请写出一个满足以上条件的函数表达式 .
考点三、反比例函数中的数形结合
1.反比例函数y=与一次函数y=ax+b在同一坐标系中的大致图象可能是( )
A.B.C.D.
2.小明同学利用计算机软件绘制函数y=(a、b为常数)的图象如图所示,由学习函数的经验,可以推断常数a、b的值满足( )
A.a>0,b>0 B.a>0,b<0C.a<0,b>0D.a<0,b<0
3.已知在同一直角坐标系中二次函数和反比例函数的图象如图所示,则一次函数的图象可能是( )
A. B. C. D.
考点四、反比例函数规律性问题
1.如图,在平面直角坐标系中,已知直线和双曲线,在直线上取一点,记为,过作轴的垂线交双曲线于点,过作轴的垂线交直线于点,过作轴的垂线交双曲线于点,过作轴的垂线交直线于点······,依次进行下去,记点的横坐标为,若则______.
2.如图,已知A1,A2,A3,…An,…是x轴上的点,且OA1=A1A2=A2A3=…=An﹣1An…=1,分别过点A1,A2,A3,…,An,…作x轴的垂线交反比例函数y=(x>0)的图象于点B1,B2,B3,…,Bn,…,过点B2作B2P1⊥A1B1于点P1,过点B3作B3P2⊥A2B2于点P2…,记△B1P1B2的面积为S1,△B2P2B3的面积为S2…,△BnPnBn+1的面积为Sn,则S1+S2+S3+…+Sn等于( )
A.B.C.D.
考点五、反比例函数K值几何意义
1.如图,Rt△AOB的一条直角边OB在x轴上,双曲线y=经过斜边OA的中点C,与另一直角边交于点D.若S△OCD=9,则S△OBD的值为 .
2.如图,已知直线y=-x+2分别与x轴,y轴交于A,B两点,与双曲线y=交于E,F两点,若AB=2EF,则k的值是( )
A.-1B.1 C. D.
3.如图,OA在x轴上,OB在y轴上,OA=4,OB=3,点C在边OA上,AC=1,⊙P的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数y=(k≠0)的图象经过圆心P,则k的值是( )
A.B.C.D.﹣2
4.如图,在平面直角坐标系中,▱ABCD的顶点B位于y轴的正半轴上,顶点C,D位于x轴的负半轴上,双曲线y=kx(k<0, x<0)与▱ABCD的边AB,AD交于点E、F,点A的纵坐标为10,F(−12, 5),把△BOC沿着BC所在直线翻折,使原点O落在点G处,连接EG,若EG // y轴,则△BOC的面积是________.
5..如图,点,点都在反比例函数的图象上,过点分别向轴、轴作垂线,垂足分别为点,.连接,,.若四边形的面积记作,的面积记作,则( )
A. B. C. D.
6.如图,在直角坐标系中,以坐标原点O(0,0),A(0,4),B(3,0)为顶点的Rt△AOB,其两个锐角对应的外角角平分线相交于点P,且点P恰好在反比例函数y=的图象上,则k的值为()
A.36 B.48 C.49 D.64
7.如图,在平面直角坐标系中,矩形ABCD的对角线AC的中点与坐标原点重合,点E是x轴上一点,连接AE.若AD平分∠OAE,反比例函数y(k>0,x>0)的图象经过AE上的两点A,F,且AF=EF,△ABE的面积为18,则k的值为______
8.如图,点A,C分别是正比例函数y=x的图象与反比例函数y=的图象的交点,过A点作AD⊥x轴于点D,过C点作CB⊥x轴于点B,则四边形ABCD的面积为
9.如图,△是直角三角形,=,,点在反比例函数的图象上.若点在反比例函数的图象上,则的值为
A.B.C.D.
10. 如图,在平面直角坐标系中,一次函数y=-4x+4的图像与x轴,y轴分别交于A,B两点,正方形ABCD的顶点C,D在第一象限,顶点D在反比例函数 的图像上,若正方形ABCD向左平移n个单位后,顶点C恰好落在反比例函数的图像上,则n的值是( )
A. 2B. 3C. 4D. 5
考点六、反比例函数的综合性问题
1.实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可近似地用二次函数y=﹣200x2+400x刻画;1.5小时后(包括1.5小时)y与x可近似地用反比例函数y=(k>0)刻画(如图所示).
(1)根据上述数学模型计算:
①喝酒后几时血液中的酒精含量达到最大值?最大值为多少?
②当x=5时,y=45,求k的值.
(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.
2.如图,矩形OABC的顶点A, C分别落在x轴,y轴的正半 轴上,顶点B(2, 2eq \r(,3)),反比例函数y=eq \f(k,x)(x>0)的图象与BC,AB分别交于D,E,BD=eq \f(1,2).
(1)求反比例函数关系式和点E的坐标;
(2)写出DE与AC的位置关系并说明理由;
(3)点F在直线AC上,点G是坐标系内点,当四边形BCFG为菱形时,求出点G的坐标并判断点G是否在反比例函数图象上.
3.如图,已知反比例函数的图象与直线相交于点,.
(1)求出直线的表达式;
(2)在轴上有一点使得的面积为18,求出点的坐标.
4.如图,直线y=﹣x+3与x,y轴分别交于点A,B,与反比例函数的图象交于点P(2,1).
(1)求该反比例函数的关系式;
(2)设PC⊥y轴于点C,点A关于y轴的对称点为A′;
①求△A′BC的周长和sin∠BA′C的值;
②对大于1的常数m,求x轴上的点M的坐标,使得sin∠BMC=.
如图1,直线y=k1x与反比例函数y=(k≠0)的图象交于点A,B,直线y=k2x与反比例函数y=的图象交于点C,D,且k1•k2≠0,k1≠k2,顺次连接A,D,B,C,AD,BC分别交x轴于点F,H,交y轴于点E,G,连接FG,EH.
四边形ADBC的形状是 ;
如图2,若点A的坐标为(2,4),四边形AEHC是正方形,则k2= ;
如图3,若四边形EFGH为正方形,点A的坐标为(2,6),求点C的坐标;
判断:随着k1、k2取值的变化,四边形ADBC能否为正方形?若能,求点A的坐标;若不能,请简要说明理由.
6.如图,在平面直角坐标系中,B、C两点在x轴的正半轴上,以线段BC为边向上作正方形ABCD,顶点A在正比例函数y=2x的图象上,反比例函数y=(x>0,k>0)的图象经过点A,且与边CD相交于点E.
(1)若BC=4,求点E的坐标;
(2)连接AE,OE.
①若△AOE的面积为24,求k的值;
②是否存在某一位置使得AE⊥OA,若存在,求出k的值;若不存在,请说明理由.
7.如图,在平面直角坐标系中,直线l与x轴相交于点M(3,0),与y轴相交于点N(0,4),点A为MN的中点,反比例函数y=(x>0)的图象过点A.
(1)求直线l和反比例函数的解析式;
(2)在函数y=(k>0)的图象上取异于点A的一点C,作CB⊥x轴于点B,连接OC交直线l于点P,若△ONP的面积是△OBC面积的3倍,求点P的坐标.
中考数学一轮复习考点复习专题09 反比例函数【考点巩固】(含解析): 这是一份中考数学一轮复习考点复习专题09 反比例函数【考点巩固】(含解析),共18页。试卷主要包含了已知点A,为_________等内容,欢迎下载使用。
中考训练考点综合专题:反比例函数与其他知识的综合专项训练与解析: 这是一份中考训练考点综合专题:反比例函数与其他知识的综合专项训练与解析,共6页。试卷主要包含了判断函数图象,求交点坐标或根据交点求取值范围等内容,欢迎下载使用。
专题08 反比例函数(6大考点)-中考数学总复习真题探究与变式训练(全国通用): 这是一份专题08 反比例函数(6大考点)-中考数学总复习真题探究与变式训练(全国通用),共32页。