2021学年25.2 用列举法求概率教课内容ppt课件
展开问题:甲、乙、丙三个盒中分别装有大小、形状、质地相同的小球若干,甲盒中装有2个小球,分别写有字母A和B;乙盒中装有3个小球,分别写有字母C、D和E;丙盒中装有2个小球,分别写有字母H和I;现要从3个盒中各随机取出1个小球.
(1)取出的3个小球中恰好有1个,2个,3个写有元音字母的概率各是多少?(2)取出的3个小球上全是辅音字母的概率是多少?
(1)取出的3个小球中恰好有1个,2个,3个写有元音字母的概率各是多少?
解:由树状图得,所有可能出现的结果有12个,它们出现的可能性相等.
(2)取出的3个小球上全是辅音字母的概率是多少?
画树状图求概率的基本步骤
(1)明确一次试验的几个步骤及顺序;(2)画树状图列举一次试验的所有可能结果;(3)数出随机事件A包含的结果数m,试验的所有可能结果数n;(4)用概率公式进行计算.
例1:甲、乙、丙三人做传球的游戏,开始时,球在甲手中,每次传球,持球的人将球任意传给其余两人中的一人,如此传球三次.
(1)写出三次传球的所有可能结果(即传球的方式);
(2)指定事件A:“传球三次后,球又回到甲的手中”,写出A发生的所有可能结果;
共有八种可能的结果,每种结果出现的可能性相同;
(2)传球三次后,球又回到甲手中,事件A发生有两种可能出现结果(乙,丙,甲)(丙,乙,甲) (3) P (A)=
当试验包含两步时,列表法比较方便;当然,此时也可以用树形图法; 当事件要经过多个(三个或三个以上)步骤完成时,应选用树状图法求事件的概率.
思考 你能够用列表法写出3次传球的所有可能结果吗?
若再用列表法表示所有结果已经不方便!
例2 某班有1名男生、2名女生在校文艺演出中获演唱奖,另有2名男生、2名女生获演奏奖.从获演唱奖和演奏奖的学生中各任选一人去领奖,求两人都是女生的概率.
解:设两名领奖学生都是女生的事件为A,两种奖项各任选1人的结果用“树状图”来表示.
计算等可能情形下概念的关键是确定所有可能性相等的结果总数n和求出事件A发生的结果总数m,“树状图”能帮助我们有序的思考,不重复,不遗漏地得出n和m.
1.现在学校决定由甲同学代表学校参加全县的诗歌朗诵比赛,甲同学有3件上衣,分别为红色(R)、黄色(Y)、蓝色(B),有2条裤子,分别为蓝色(B)和棕色(b)。甲同学想要穿蓝色上衣和蓝色裤子参加比赛,你知道甲同学任意拿出1件上衣和1条裤子,恰好是蓝色上衣和蓝色裤子的概率是多少吗?
解:用“树状图”列出所有可能出现的结果:
每种结果的出现是等可能的.“取出1件蓝色上衣和1条蓝色裤子”记为事件A,那么事件A发生的概率是P(A)=
所以,甲同学恰好穿上蓝色上衣和蓝色裤子的概率是
是一种解决试验有多步(或涉及多个因素)的好方法.
弄清试验涉及试验因素个数或试验步骤分几步;
③利用概率公式进行计算.
①关键要弄清楚每一步有几种结果;
②在树状图下面对应写着所有可能 的结果;
②在摸球试验一定要弄清“放回”还 是“不放回”.
1.a、b、c、d四本不同的书放入一个书包,至少放一本,最多放2本,共有 种不同的放法.
2.三女一男四人同行,从中任意选出两人,其性别不同的概率为( )
3.在一个不透明的布袋中装有2个白球和n个黄球,它们除颜色外,其余均相同,若从中随机摸出一个球,摸到黄球的概率为 ,则n= .
A. B. C. D.
4.在一个不透明的盒子里,装有三个分别写有数字6,-2,7的小球,它们的形状、大小、质地等完全相同.先从盒子里随机取出一个小球,记下数字后放回盒子里,摇匀后再随机取出一个小球,记下数字.请你用列表或画树状图的方法求下列事件的概率.(1)两次取出的小球上的数字相同;(2)两次取出的小球上的数字之和大于10.
人教版九年级上册第二十五章 概率初步25.2 用列举法求概率背景图ppt课件: 这是一份人教版九年级上册第二十五章 概率初步25.2 用列举法求概率背景图ppt课件,共15页。PPT课件主要包含了美丽的青海湖,问题1,练习1,练习2,拓展练习等内容,欢迎下载使用。
九年级上册25.2 用列举法求概率示范课课件ppt: 这是一份九年级上册25.2 用列举法求概率示范课课件ppt,共34页。PPT课件主要包含了逐点导讲练,课堂小结,作业提升,学习目标,课时讲解,课时流程,知识点,枚举法直接列举法,感悟新知,列表法等内容,欢迎下载使用。
初中人教版25.2 用列举法求概率一等奖ppt课件: 这是一份初中人教版25.2 用列举法求概率一等奖ppt课件,文件包含252用列举法求概率第2课时课件pptx、252用列举法求概率第2课时教案docx等2份课件配套教学资源,其中PPT共34页, 欢迎下载使用。