所属成套资源:2022年中考数学复习之挑战压轴题(解答题+选择题+填空题)含答案
2022年中考数学复习之挑战压轴题(选择题):方程与不等式(含答案)
展开这是一份2022年中考数学复习之挑战压轴题(选择题):方程与不等式(含答案),共17页。
2022年中考数学复习之挑战压轴题(选择题):方程与不等式
一.选择题(共10小题)
1.(2021春•萧山区期中)已知关于x,y的方程组,将此方程组的两个方程左右两边分别对应相加,得到一个新的方程,当m每取一个值时,就有一个方程,这些方程有一个公共解,这个公共解为( )
A. B. C. D.
2.(2021春•望城区期末)小杨在商店购买了a件甲种商品,b件乙种商品,共用213元,已知甲种商品每件5元,乙种商品每件19元,那么a+b的最大值是
( )
A.37 B.27 C.23 D.20
3.(2021春•福田区校级期中)如果关于x的不等式组有且仅有四个整数解,且关于y的分式方程﹣=1有非负数解,则符合条件的所有整数m的和是( )
A.13 B.15 C.20 D.22
4.(2021•黑龙江模拟)若关于x的分式方程无解,则m的值为( )
A.﹣3或﹣ B.﹣或﹣
C.﹣3或﹣或﹣ D.﹣3或﹣
5.(2021春•庆云县期末)已知关于x,y的二元一次方程组,给出下列结论中正确的是( )
①当这个方程组的解x,y的值互为相反数时,a=﹣2;
②当a=1时,方程组的解也是方程x+y=4+2a的解;
③无论a取什么实数,x+2y的值始终不变;
④若用x表示y,则y=﹣;
A.①② B.②③ C.②③④ D.①③④
6.(2020•黄州区校级模拟)如图,长方形ABCD被分成3个正方形和2个长方形后仍是中心对称图形,设长方形ABCD的周长为l,若图中3个正方形和2个长方形的周长和为l,则标号为①的正方形的边长为( )
A.l B.l C.l D.l
7.(2020•东兴区开学)数学著作《算术研究》一书中,对于任意实数,通常用[x]表示不超过x的最大整数,如:[π]=3,[2]=2,[﹣2.1]=﹣3,给出如下结论:
①[﹣x]=﹣x;
②若[x]=n,则x的取值范围是n≤x<n+1;
③当﹣1<x<1时,[1+x]+[1﹣x]的值为1或2;
④x=﹣2.75是方程4x﹣2[x]+5=0的唯一一个解.
其中正确的结论有( )
A.①② B.②③ C.①③ D.③④
8.(2021秋•霸州市期末)如图,在2022年2月的日历表中用优美的“”形框住五个数,框出1,3,8,10,16五个数,它们的和为38,移动“”的位置又框出五个数,已知这五个数的和是53,则它们中最小两个数的和是( )
A.9 B.10 C.11 D.19
9.(2019春•鲤城区校级期末)已知一元二次方程a(x+m)2+n=0(a≠0)的两根分别为﹣3,1,则方程a(x+m﹣2)2+n=0(a≠0)的两根分别为( )
A.1,5 B.﹣1,3 C.﹣3,1 D.﹣1,5
10.(2020秋•永嘉县校级期末)有一个不完整圆柱形玻璃密封容器如图①,测得其底面半径为a,高为h,其内装蓝色液体若干.若如图②放置时,测得液面高为h;若如图3放置时,测得液面高为h.则该玻璃密封容器的容积(圆柱体容积=底面积×高)是( )
A. B. C. D.
2022年中考数学复习之挑战压轴题(选择题):方程与不等式(10题)
参考答案与试题解析
一.选择题(共10小题)
1.(2021春•萧山区期中)已知关于x,y的方程组,将此方程组的两个方程左右两边分别对应相加,得到一个新的方程,当m每取一个值时,就有一个方程,这些方程有一个公共解,这个公共解为( )
A. B. C. D.
【考点】二元一次方程组的解;解二元一次方程组.
【专题】计算题;一次方程(组)及应用;运算能力.
【分析】根据题意①+②得x﹣y﹣9+m(x+y﹣1)=0,然后根据题意列出方程组即可求得公共解.
【解答】解:①+②得,
x+my+mx﹣y=9+m
x﹣y﹣9+mx+my﹣m=0
x﹣y﹣9+m(x+y﹣1)=0
根据题意,这些方程有一个公共解,与m的取值无关,
解得
所以这个公共解为
故选:C.
【点评】本题考查了二元一次方程组的解法,解题关键是利用筛选法解二元一次方程组.
2.(2021春•望城区期末)小杨在商店购买了a件甲种商品,b件乙种商品,共用213元,已知甲种商品每件5元,乙种商品每件19元,那么a+b的最大值是
( )
A.37 B.27 C.23 D.20
【考点】二元一次方程的应用.
【专题】应用题.
【分析】根据题意得出关于a和b的二元一次方程,然后用b表示出a,继而用b表示出a+b,然后可以利用函数的思想得出a+b取得最值的条件,即能得出答案.
【解答】解:由题意得,5a+19b=213,
∴a=,
∴a+b=+b=,
∵a+b是关于b的一次函数且a+b随b的增大而减小,
∴当b最小时,a+b取最大值,
又∵a,b是正整数,
∴当b=2时,a+b的最大值=37.
故选:A.
【点评】本题考查二元一次不定方程的应用,技巧性较强,解答本题的关键是函数思想的应用,同学们要注意掌握这种解题思想,它会在以后的解题中经常用到.
3.(2021春•福田区校级期中)如果关于x的不等式组有且仅有四个整数解,且关于y的分式方程﹣=1有非负数解,则符合条件的所有整数m的和是( )
A.13 B.15 C.20 D.22
【考点】分式方程的解;一元一次不等式组的整数解.
【专题】分式方程及应用;运算能力.
【分析】根据不等式组的整数解的个数确定m的取值范围,再根据分式方程的非负数解确定m的取值范围,从而求出符合条件的所有整数即可得结论.
【解答】解:原不等式组的解集为﹣<x≤,
因为不等式组有且仅有四个整数解,
所以0≤<1,
解得2≤m<7.
原分式方程的解为y=,
因为分式方程有非负数解,
所以≥0,解得m>1,且m≠5,因为m=5时y=2是原分式方程的增根.
所以符合条件的所有整数m的和是2+3+4+6=15.
故选:B.
【点评】本题考查了不等式组的整数解、分式方程的解,解决本题的关键是根据不等式组的整数解的个数确定m的取值范围.
4.(2021•黑龙江模拟)若关于x的分式方程无解,则m的值为( )
A.﹣3或﹣ B.﹣或﹣
C.﹣3或﹣或﹣ D.﹣3或﹣
【考点】分式方程的解.
【专题】计算题;分式方程及应用;运算能力.
【分析】首先最简公分母为0,求出增根,在把分式方程化为整式方程,把增根代入整式方程,字母系数为0,满足这两个条件求出m的值.
【解答】解:当(x+3)(x﹣3)=0时,x1=3或x2=﹣3,
原分式方程可化为:=1﹣,
去分母,得x(x+3)=(x+3)(x﹣3)﹣(mx﹣2),
整理得(3+m)x=﹣7,
∵分式方程无解,
∴3+m=0,
∴m=﹣3,
把x1=3或x2=﹣3,分别代入(3+m)x=﹣7,
得m=﹣或m=﹣,
综上所述:m的值为m=﹣或m=﹣或m=﹣3,
故选:C.
【点评】本题考查分式方程的解,掌握在本题中分式方程无解满足的两个条件:一次项系数为0,最简公分母为0,是解决此题的关键.
5.(2021春•庆云县期末)已知关于x,y的二元一次方程组,给出下列结论中正确的是( )
①当这个方程组的解x,y的值互为相反数时,a=﹣2;
②当a=1时,方程组的解也是方程x+y=4+2a的解;
③无论a取什么实数,x+2y的值始终不变;
④若用x表示y,则y=﹣;
A.①② B.②③ C.②③④ D.①③④
【考点】二元一次方程组的解;解二元一次方程组;二元一次方程的解.
【专题】一次方程(组)及应用;运算能力;应用意识.
【分析】根据方程组的解法可以得到x+y=2+a,
①令x+y=0,即可求出a的值,验证即可,
②由①得x+y=0,而x+y=4+2a,求出a的值,再与a=1比较得出答案,
③解方程组可求出方程组的解,再代入x+2y求值即可,
④用含有x、y的代数式表示a,进而得出x、y的关系,
【解答】解:关于x,y的二元一次方程组,
①+②得,2x+2y=4+2a,
即:x+y=2+a,
(1)①当方程组的解x,y的值互为相反数时,即x+y=0时,即2+a=0,
∴a=﹣2,故①正确,
(2)②原方程组的解满足x+y=2+a,
当a=1时,x+y=3,
而方程x+y=4+2a的解满足x+y=6,
因此②不正确,
(3)方程组,解得,
∴x+2y=2a+1+2﹣2a=3,
因此③是正确的,
(4)方程组,
由方程①得,a=4﹣x﹣3y代入方程②得,
x﹣y=3(4﹣x﹣3y),
即;y=﹣+
因此④是正确的,
故选:D.
【点评】考查二元一次方程组的解法和应用,正确的解出方程组的解是解决问题的关键.
6.(2020•黄州区校级模拟)如图,长方形ABCD被分成3个正方形和2个长方形后仍是中心对称图形,设长方形ABCD的周长为l,若图中3个正方形和2个长方形的周长和为l,则标号为①的正方形的边长为( )
A.l B.l C.l D.l
【考点】二元一次方程的应用.
【专题】方程思想;一次方程(组)及应用.
【分析】设两个大正方形边长为x,小正方形的边长为y,由图可知周长和列方程和方程组,解答即可.
【解答】解:长方形ABCD被分成3个正方形和2个长方形后仍是中心对称图形,
∴两个大正方形相同、2个长方形相同.
设两个大正方形边长为y,小正方形的边长为x,
∴小长方形的边长分别为(y﹣x)、(x+y),大长方形边长为(2y﹣x)、(2y+x),
∵大长方形周长=l,即:2[(2y﹣x)+(2y+x)]=l,
∴8y=l,
∴y=
∵3个正方形和2个长方形的周长和为l,
即:,
∴16y+4x=,
∴x=,
则标号为①的正方形的边长,
故选:B.
【点评】此题主要考查了中心对称图形的性质和二元一次方程组的应用,关键是正确理解题意,要明确中心对称的性质,找出题目中的等量关系,列出方程组.注意各个正方形的边长之间的数量关系.
7.(2020•东兴区开学)数学著作《算术研究》一书中,对于任意实数,通常用[x]表示不超过x的最大整数,如:[π]=3,[2]=2,[﹣2.1]=﹣3,给出如下结论:
①[﹣x]=﹣x;
②若[x]=n,则x的取值范围是n≤x<n+1;
③当﹣1<x<1时,[1+x]+[1﹣x]的值为1或2;
④x=﹣2.75是方程4x﹣2[x]+5=0的唯一一个解.
其中正确的结论有( )
A.①② B.②③ C.①③ D.③④
【考点】解一元一次不等式组;数学常识;一元一次方程的解.
【专题】新定义.
【分析】①可举反例;②可根据题意中的规定判断;③当﹣1<x<0,x=0,0<x<1时,分类讨论得结论;④根据x的取值范围,求出方程的解后判断.
【解答】解:因为[x]表示不大于x的最大整数,∴当[x]=n时,n≤x,∴①不一定正确;
若[x]=n,则x的取值范围是n≤x<n+1,故②是正确的;
当﹣1<x<0时,[1+x]+[1﹣x]=0+1=1,
当x=0时,[1+x]+[1﹣x]=1+1=2,
当0<x<1时,[1+x]+[1﹣x]=1+0=1,综上③是正确的;
由题意,得0≤x﹣[x]<1,
4x﹣2[x]+5=0,
2x﹣[x]+=0,
x﹣[x]=﹣x﹣,
∴0≤﹣x﹣<1,
∴﹣3.5<x≤﹣2.5.
当﹣3.5<x<﹣3时,方程变形为4x﹣2×(﹣4)+5=0,
解得x=﹣3.25;
当﹣3≤x≤﹣2.5时,方程变形为4x﹣2×(﹣3)+5=0,
解得x=﹣2.75;
所以﹣3.25与﹣2.75都是方程4x﹣2[x]+5=0的解.故④是错误的.
故选:B.
【点评】本题考查了不等式组、方程的解法.题目难度较大.理解题意和学会分类讨论是解决本题的关键.
8.(2021秋•霸州市期末)如图,在2022年2月的日历表中用优美的“”形框住五个数,框出1,3,8,10,16五个数,它们的和为38,移动“”的位置又框出五个数,已知这五个数的和是53,则它们中最小两个数的和是( )
A.9 B.10 C.11 D.19
【考点】一元一次方程的应用.
【专题】一次方程(组)及应用;应用意识.
【分析】设最小的数是x,则其余的4个数分别为:x+2、x+7、x+9、x+15,根据“这五个数的和是53”列出方程并解答.
【解答】解:设最小的数是x,则
x+x+2+x+7+x+9+x+15=53.
解得x=4.
所以x+x+2=10.
即它们中最小两个数的和是10.
故选:B.
【点评】本题考查了一元一次方程的应用,正确找出数字规律,列出一元一次方程是解题的关键.
9.(2019春•鲤城区校级期末)已知一元二次方程a(x+m)2+n=0(a≠0)的两根分别为﹣3,1,则方程a(x+m﹣2)2+n=0(a≠0)的两根分别为( )
A.1,5 B.﹣1,3 C.﹣3,1 D.﹣1,5
【考点】解一元二次方程﹣直接开平方法.
【专题】一元二次方程及应用.
【分析】根据已知方程的解得出x﹣2=﹣3或x﹣2=1,求出x即可.
【解答】解:∵一元二次方程a(x+m)2+n=0(a≠0)的两根分别为﹣3,1,
∴方程a(x+m﹣2)2+n=0(a≠0)中x﹣2=﹣3或x﹣2=1,
解得:x=﹣1或3,
即方程a(x+m﹣2)2+n=0(a≠0)的两根分别为﹣1和3,
故选:B.
【点评】本题考查了解一元二次方程,能根据已知方程的解得出x﹣2=﹣3或x﹣2=1是解此题的关键.
10.(2020秋•永嘉县校级期末)有一个不完整圆柱形玻璃密封容器如图①,测得其底面半径为a,高为h,其内装蓝色液体若干.若如图②放置时,测得液面高为h;若如图3放置时,测得液面高为h.则该玻璃密封容器的容积(圆柱体容积=底面积×高)是( )
A. B. C. D.
【考点】一元一次方程的应用;认识立体图形;列代数式.
【专题】一次方程(组)及应用;几何图形;应用意识.
【分析】根据圆柱体的体积公式和图②和图③中的溶液体积相等,可以列出相应的方程,从而可以得出结论.
【解答】解:设该玻璃密封容器的容积为V,
π×a2×h=V﹣π×a2×(h﹣h),
解得V=,
故选:B.
【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程,利用方程的思想解答.
考点卡片
1.数学常识
数学常识
此类问题要结合实际问题来解决,生活中的一些数学常识要了解.比如给出一个物体的高度要会选择它合适的单位长度等等.
平时要注意多观察,留意身边的小知识.
2.列代数式
(1)定义:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.
(2)列代数式五点注意:①仔细辨别词义. 列代数式时,要先认真审题,抓住关键词语,仔细辩析词义.如“除”与“除以”,“平方的差(或平方差)”与“差的平方”的词义区分. ②分清数量关系.要正确列代数式,只有分清数量之间的关系. ③注意运算顺序.列代数式时,一般应在语言叙述的数量关系中,先读的先写,不同级运算的语言,且又要体现出先低级运算,要把代数式中代表低级运算的这部分括起来.④规范书写格式.列代数时要按要求规范地书写.像数字与字母、字母与字母相乘可省略乘号不写,数与数相乘必须写乘号;除法可写成分数形式,带分数与字母相乘需把代分数化为假分数,书写单位名称什么时不加括号,什么时要加括号.注意代数式括号的适当运用. ⑤正确进行代换.列代数式时,有时需将题中的字母代入公式,这就要求正确进行代换.
【规律方法】列代数式应该注意的四个问题
1.在同一个式子或具体问题中,每一个字母只能代表一个量.
2.要注意书写的规范性.用字母表示数以后,在含有字母与数字的乘法中,通常将“×”简写作“•”或者省略不写.
3.在数和表示数的字母乘积中,一般把数写在字母的前面,这个数若是带分数要把它化成假分数.
4.含有字母的除法,一般不用“÷”(除号),而是写成分数的形式.
3.一元一次方程的解
定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.
把方程的解代入原方程,等式左右两边相等.
4.一元一次方程的应用
(一)一元一次方程解应用题的类型有:
(1)探索规律型问题;
(2)数字问题;
(3)销售问题(利润=售价﹣进价,利润率=×100%);(4)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);
(5)行程问题(路程=速度×时间);
(6)等值变换问题;
(7)和,差,倍,分问题;
(8)分配问题;
(9)比赛积分问题;
(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度).
(二)利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.
列一元一次方程解应用题的五个步骤
1.审:仔细审题,确定已知量和未知量,找出它们之间的等量关系.
2.设:设未知数(x),根据实际情况,可设直接未知数(问什么设什么),也可设间接未知数.
3.列:根据等量关系列出方程.
4.解:解方程,求得未知数的值.
5.答:检验未知数的值是否正确,是否符合题意,完整地写出答句.
5.二元一次方程的解
(1)定义:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.
(2)在二元一次方程中,任意给出一个未知数的值,总能求出另一个未知数的一个唯一确定的值,所以二元一次方程有无数解.
(3)在求一个二元一次方程的整数解时,往往采用“给一个,求一个”的方法,即先给出其中一个未知数(一般是系数绝对值较大的)的值,再依次求出另一个的对应值.
6.二元一次方程的应用
二元一次方程的应用
(1)找出问题中的已知条件和未知量及它们之间的关系.
(2)找出题中的两个关键的未知量,并用字母表示出来.
(3)挖掘题目中的关系,找出等量关系,列出二元一次方程.
(4)根据未知数的实际意义求其整数解.
7.二元一次方程组的解
(1)定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.
(2)一般情况下二元一次方程组的解是唯一的.数学概念是数学的基础与出发点,当遇到有关二元一次方程组的解的问题时,要回到定义中去,通常采用代入法,即将解代入原方程组,这种方法主要用在求方程中的字母系数.
8.解二元一次方程组
(1)用代入法解二元一次方程组的一般步骤:①从方程组中选一个系数比较简单的方程,将这个方程组中的一个未知数用含另一个未知数的代数式表示出来.②将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程.③解这个一元一次方程,求出x(或y)的值.④将求得的未知数的值代入变形后的关系式中,求出另一个未知数的值.⑤把求得的x、y的值用“{”联立起来,就是方程组的解.
(2)用加减法解二元一次方程组的一般步骤:①方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使某一个未知数的系数相等或互为相反数.②把两个方程的两边分别相减或相加,消去一个未知数,得到一个一元一次方程.③解这个一元一次方程,求得未知数的值.④将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数的值.⑤把所求得的两个未知数的值写在一起,就得到原方程组的解,用的形式表示.
9.解一元二次方程-直接开平方法
形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.
如果方程化成x2=p的形式,那么可得x=±;
如果方程能化成(nx+m)2=p(p≥0)的形式,那么nx+m=±.
注意:①等号左边是一个数的平方的形式而等号右边是一个非负数.
②降次的实质是由一个二次方程转化为两个一元一次方程.
③方法是根据平方根的意义开平方.
10.分式方程的解
求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.
注意:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.
11.解一元一次不等式组
(1)一元一次不等式组的解集:几个一元一次不等式的解集的公共部分,叫做由它们所组成的不等式组的解集.
(2)解不等式组:求不等式组的解集的过程叫解不等式组.
(3)一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.
方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分.
解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.
12.一元一次不等式组的整数解
(1)利用数轴确定不等式组的解(整数解).
解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.
(2)已知解集(整数解)求字母的取值.
一般思路为:先把题目中除未知数外的字母当做常数看待解不等式组或方程组等,然后再根据题目中对结果的限制的条件得到有关字母的代数式,最后解代数式即可得到答案.
13.认识立体图形
(1)几何图形:从实物中抽象出的各种图形叫几何图形.几何图形分为立体图形和平面图形.
(2)立体图形:有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一个平面内,这就是立体图形.
(3)重点和难点突破:
结合实物,认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等.能区分立体图形与平面图形,立体图形占有一定空间,各部分不都在同一平面内.
相关试卷
这是一份2022年中考数学复习之挑战压轴题(选择题):圆(含答案),共28页。
这是一份2022年中考数学复习之挑战压轴题(选择题):一次函数(含答案),共26页。试卷主要包含了小时等内容,欢迎下载使用。
这是一份2022年中考数学复习之挑战压轴题(选择题):图像的平移、折叠、旋转(含答案),共25页。