中考数学二轮复习难点题型专项突破 专题08 反比例函数图像上点的坐标特征与系数k的几何意义
展开1.(2021•怀化中考)如图,菱形ABCD的四个顶点均在坐标轴上,对角线AC、BD交于原点O,AE⊥BC于E点,交BD于M点,反比例函数y=(x>0)的图象经过线段DC的中点N,若BD=4,则ME的长为( )
A.ME=B.ME=C.ME=1D.ME=
解:过N作y轴和x轴的垂线NG,NH,
设N(b,a),
∵反比例函数y=(x>0)的图象经过点N,
∴ab=,
∵四边形ABCD是菱形,
∴BD⊥AC,DO=BD=2,
∵NH⊥x轴,NG⊥y轴,
∴四边形NGOH是矩形,
∴NG∥x轴,NH∥y轴,
∵N为CD的中点,
∴DO•CO=2a•2b=4ab=,
∴CO=,
∴tan∠CDO==.
∴∠CDO=30°,
∴∠DCO=60°,
∵四边形ABCD是菱形,
∴∠ADC=∠ABC=2∠CDO=60°,∠ACB=∠DCO=60°,
∴△ABC是等边三角形,
∵AE⊥BC,BO⊥AC,
∴AE=BO=2,∠BAE=30°=∠ABO,
∴AM=BM,
∴OM=EM,
∵∠MBE=30°,
∴BM=2EM=2OM,
∴3EM=OB=2,
∴ME=,
答案:D.
2.(2020•广西中考)如图,点A,B是直线y=x上的两点,过A,B两点分别作x轴的平行线交双曲线y=(x>0)于点C,D.若AC=BD,则3OD2﹣OC2的值为( )
A.5B.3C.4D.2
解:延长CA交y轴于E,延长BD交y轴于F.
设A、B的横坐标分别是a,b,
∵点A、B为直线y=x上的两点,
∴A的坐标是(a,a),B的坐标是(b,b).则AE=OE=a,BF=OF=b.
∵C、D两点在交双曲线y=(x>0)上,则CE=,DF=.
∴BD=BF﹣DF=b﹣,AC=﹣a.
又∵AC=BD,
∴﹣a=(b﹣),
两边平方得:a2+﹣2=3(b2+﹣2),即a2+=3(b2+)﹣4,
在直角△ODF中,OD2=OF2+DF2=b2+,同理OC2=a2+,
∴3OD2﹣OC2=3(b2+)﹣(a2+)=4.
答案:C.
3.(2021•黑龙江中考)如图,在平面直角坐标系中,矩形ABCD的顶点A在双曲线y=﹣(x<0)上,点C,D在y轴的正半轴上,点E在BC上,CE=2BE,连接DE并延长,交x轴于点F,连接CF,则△FCD的面积为( )
A.2B.C.1D.
解:根据题意,设A(n,﹣),D(0,﹣),
设OC=m,则C(0,m),CD=﹣﹣m,
∴B(n,m),BC=﹣n,
∵CE=2BE,
∴CE=BC=﹣n,
∴E(n,m),
由题知BC∥FO,
∴∠DEC=∠DFO,∠DCE=∠DOF,
∴△DEC∽△DFO,
∴=,
即=,
∴FO=,
∴S△FCD=FO•CD=×(﹣﹣m)=1,
答案:C.
4.(2021•十堰中考)如图,反比例函数y=(x>0)的图象经过点A(2,1),过A作AB⊥y轴于点B,连OA,直线CD⊥OA,交x轴于点C,交y轴于点D,若点B关于直线CD的对称点B′恰好落在该反比例函数图象上,则D点纵坐标为( )
A.B.C.D.
解:设BB′交直线CD于点E,过点E作EG⊥BD于G,过B′作B′F⊥BD于点F,如图,
∵B与B′关于直线CD对称,
∴CD垂直平分BB′.
即E为BB′的中点,EB=EB′.
∵EG⊥BD,B′F⊥BD,
∴EG∥B′F.
∴EG=B′F.
∵直线OA经过点A(2,1),
∴直线OA的解析式为:y=x.
∵CD⊥OA,BB′⊥CD,
∴BB′∥OA.
设直线BB′的解析式为y=x+b,
∵B(0,1),
∴b=1.
∴直线BB′的解析式为y=x+1.
∵反比例函数y=(x>0)的图象经过点A(2,1),
∴反比例函数y=.
联立方程得:.
解得:,.
∴B′().
∴B′F=.
∴EG=.
∵AB⊥BD,
∴∠OAB=∠ODC.
∴tan∠OAB=tan∠ODC=.
在Rt△DGE中,
∵tan∠ODC=,
∴DG=﹣1.
同理:BG=.
∴OD=OB+BG+DG=.
∴D点纵坐标为.
答案:A.
5.(2021•扬州中考)如图,点P是函数y=(k1>0,x>0)的图象上一点,过点P分别作x轴和y轴的垂线,垂足分别为点A、B,交函数y=(k2>0,x>0)的图象于点C、D,连接OC、OD、CD、AB,其中k1>k2.下列结论:①CD∥AB;②S△OCD=;③S△DCP=,其中正确的是( )
A.①②B.①③C.②③D.①
解:∵PB⊥y轴,PA⊥x轴,点P在上,点C,D在上,
设P(m,),
则C(m,),A(m,0),B(0,),令,
则,即D(,),
∴PC=,PD=,
∵==,==,即,
又∠DPC=∠BPA,
∴△PDC∽△PBA,
∴∠PDC=∠PBA,
∴CD∥AB,故①正确;
△PDC的面积==,故③正确;
S△OCD=S四边形OAPB﹣S△OCA﹣S△OBD﹣S△DPC
=
=,故②错误;
答案:B.
6.(2021•徐州中考)如图,点A、D分别在函数y=、y=的图象上,点B、C在x轴上.若四边形ABCD为正方形,点D在第一象限,则点D的坐标是 (2,3) .
解:设A的纵坐标为n,则D的纵坐标为n,
∵点A、D分别在函数y=、y=的图象上,
∴A(﹣,n),D(,n),
∵四边形ABCD为正方形,
∴+=n,
解得n=3(负数舍去),
∴D(2,3),
答案:(2,3).
7.(2021•深圳中考)如图,已知反比例函数的图象过A,B两点,A点坐标(2,3),直线AB经过原点,将线段AB绕点B顺时针旋转90°得到线段BC,则C点坐标为 (4,﹣7) .
解:∵A点坐标(2,3),直线AB经过原点,
∴B(﹣2,﹣3)
过点B作x轴的平行线l过点A,点C作l的垂线,分别交于D,E两点,则D(2,﹣3),
∵∠ABD+∠CBE=90°,∠ABD+∠BAD=90°,
∴∠CBE=∠BAD,
在△ABD与△BCE 中,
,
∴△ABD≌△BCE(AAS),
∴BE=AD=6,CE=BD=4,
∴C(4,﹣7),
答案:(4,﹣7).
8.(2021•黔东南州中考)如图,若反比例函数y=的图象经过等边三角形POQ的顶点P,则△POQ的边长为 2 .
解:如图,过点P作x轴的垂线于M,
∵△POQ为等边三角形,
∴OP=OQ,OM=QM=OQ,
∵反比例函数的图象经过点P,
∴设P(a,)(a>0),
则OM=a,OQ=OP=2a,PM=,
在Rt△OPM中,
PM===a,
∴=a,
∴a=1(负值舍去),
∴OQ=2a=2,
答案:2.
9.(2021•衢州中考)将一副三角板如图放置在平面直角坐标系中,顶点A与原点O重合,AB在x轴正半轴上,且AB=4,点E在AD上,DE=AD,将这副三角板整体向右平移 12﹣ 个单位,C,E两点同时落在反比例函数y=的图象上.
解:∵AB=4,
∴BD=AB=12,
∴C(4+6,6),
∵DE=AD,
∴E的坐标为(3,9),
设平移t个单位后,则平移后C点的坐标为(4+6+t,6),平移后E点的坐标为(3+t,9),
∵平移后C,E两点同时落在反比例函数y=的图象上,
∴(4+6+t)×6=(3+t)×9,
解得t=12﹣,
答案:12﹣.
10.(2021•荆门中考)如图,在平面直角坐标系中,Rt△OAB斜边上的高为1,∠AOB=30°,将Rt△OAB绕原点顺时针旋转90°得到Rt△OCD,点A的对应点C恰好在函数y=(k≠0)的图象上,若在y=的图象上另有一点M使得∠MOC=30°,则点M的坐标为 (,1) .
解:作AE⊥OB于E,MF⊥x轴于F,则AE=1,
∵∠AOB=30°,
∴OE=AE=,
将Rt△OAB绕原点顺时针旋转90°得到Rt△OCD,点A的对应点C为(1,),
∵点C在函数y=(k≠0)的图象上,
∴k=1×=,
∴y=,
∵∠COD=∠AOB=30°,∠MOC=30°,
∴∠DOM=60°,
∴∠MOF=30°,
∴OF=MF,
设MF=n,则OF=n,
∴M(n,n),
∵点M在函数y=的图象上,
∴n=,
∴n=1(负数舍去),
∴M(,1),
答案:(,1).
类型2 系数k的几何意义
11.(2021•营口中考)如图,在平面直角坐标系中,菱形ABCD的边BC与x轴平行,A,B两点纵坐标分别为4,2,反比例函数y=经过A,B两点,若菱形ABCD面积为8,则k值为( )
A.﹣8B.﹣2C.﹣8D.﹣6
解:过点A作AE⊥BC于点E,
∵A、B两点的纵坐标分别是4、2,
∴AE=4﹣2=2,
∵菱形ABCD的面积为8,
∴BC•AE=8,
∴BC=4,
∴AB=BC=4,
∴BE===2,
设A点坐标为(a,4),则B点的坐标为(a﹣2,2),
∵反比例函数y=经过A、B两点,
∴,
解得,
答案:A.
12.(2021•重庆中考)如图,在平面直角坐标系中,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数y=(k>0,x>0)的图象经过顶点D,分别与对角线AC,边BC交于点E,F,连接EF,AF.若点E为AC的中点,△AEF的面积为1,则k的值为( )
A.B.C.2D.3
解:设A(a,0),
∵矩形ABCD,
∴D(a,),
∵矩形ABCD,E为AC的中点,
则E也为BD的中点,
∵点B在x轴上,
∴E的纵坐标为,
∴,
∵E为AC的中点,
∴点C(3a,),
∴点F(3a,),
∵△AEF的面积为1,AE=EC,
∴S△ACF=2,
∴,
解得:k=3.
答案:D.
13.(2021•淄博中考)如图,在平面直角坐标系中,四边形AOBD的边OB与x轴的正半轴重合,AD∥OB,DB⊥x轴,对角线AB,OD交于点M.已知AD:OB=2:3,△AMD的面积为4.若反比例函数y=的图象恰好经过点M,则k的值为( )
A.B.C.D.12
解:过点M作MH⊥OB于H.
∵AD∥OB,
∴△ADM∽△BOM,
∴=()2=,
∵S△ADM=4,
∴S△BOM=9,
∵DB⊥OB,MH⊥OB,
∴MH∥DB,
∴===,
∴OH=OB,
∴S△MOH=×S△OBM=,
∵=,
∴k=,
答案:B.
14.(2021•重庆中考)如图,在平面直角坐标系中,菱形ABCD的顶点D在第二象限,其余顶点都在第一象限,AB∥x轴,AO⊥AD,AO=AD.过点A作AE⊥CD,垂足为E,DE=4CE.反比例函数y=(x>0)的图象经过点E,与边AB交于点F,连接OE,OF,EF.若S△EOF=,则k的值为( )
A.B.C.7D.
解:延长EA交x轴于点G,过点F作FH⊥x轴于点H,如图,
∵AB∥x轴,AE⊥CD,AB∥CD,
∴AG⊥x轴.
∵AO⊥AD,
∴∠DAE+∠OAG=90°.
∵AE⊥CD,
∴∠DAE+∠D=90°.
∴∠D=∠OAG.
在△DAE和△AOG中,
.
∴△DAE≌△AOG(AAS).
∴DE=AG,AE=OG.
∵四边形ABCD是菱形,DE=4CE,
∴AD=CD=DE.
设DE=4a,则AD=OA=5a.
∴OG=AE=.
∴EG=AE+AG=7a.
∴E(3a,7a).
∵反比例函数y=(x>0)的图象经过点E,
∴k=21a2.
∵AG⊥GH,FH⊥GH,AF⊥AG,
∴四边形AGHF为矩形.
∴HF=AG=4a.
∵点F在反比例函数y=(x>0)的图象上,
∴x=.
∴F().
∴OH=a,FH=4a.
∴GH=OH﹣OG=.
∵S△OEF=S△OEG+S梯形EGHF﹣S△OFH,S△EOF=,
∴.
××﹣=.
解得:a2=.
∴k=21a2=21×=.
答案:A.
15.(2021•深圳中考)如图,在平面直角坐标系中,矩形ABCD的对角线AC的中点与坐标原点重合,点E是x轴上一点,连接AE.若AD平分∠OAE,反比例函数y=(k>0,x>0)的图象经过AE上的两点A,F,且AF=EF,△ABE的面积为18,则k的值为( )
A.6B.12C.18D.24
解:如图,连接BD,OF,过点A作AN⊥OE于N,过点F作FM⊥OE于M.
∵AN∥FM,AF=FE,
∴MN=ME,
∴FM=AN,
∵A,F在反比例函数的图象上,
∴S△AON=S△FOM=,
∴•ON•AN=•OM•FM,
∴ON=OM,
∴ON=MN=EM,
∴ME=OE,
∴S△FME=S△FOE,
∵AD平分∠OAE,
∴∠OAD=∠EAD,
∵四边形ABCD是矩形,
∴OA=OD,
∴∠OAD=∠ODA=∠DAE,
∴AE∥BD,
∴S△ABE=S△AOE,
∴S△AOE=18,
∵AF=EF,
∴S△EOF=S△AOE=9,
∴S△FME=S△EOF=3,
∴S△FOM=S△FOE﹣S△FME=9﹣3=6=,
∴k=12.
答案:B.
16.(2021•锦州中考)如图,在平面直角坐标系中,▱OABC的顶点A,B在第一象限内,顶点C在y轴上,经过点A的反比例函数y=(x>0)的图象交BC于点D.若CD=2BD,▱OABC的面积为15,则k的值为 18 .
解:过点D作DN⊥y轴于N,过点B作BM⊥y轴于M,
设OC=a,CN=2b,MN=b,
∵▱OABC的面积为15,
∴BM=,
∴ND=BM=,
∴A,D点坐标分别为(,3b),(,a+2b),
∴•3b=(a+2b),
∴b=a,
∴k=•3b=•3×a=18,
答案:18.
17.(2021•绥化中考)如图,在平面直角坐标系中,O为坐标原点,MN垂直于x轴,以MN为对称轴作△ODE的轴对称图形,对称轴MN与线段DE相交于点F,点D的对应点B恰好落在y=(k≠0,x<0)的双曲线上,点O、E的对应点分别是点C、A.若点A为OE的中点,且S△AEF=1,则k的值为 ﹣24 .
解:如图,MN交x轴于点G,连接OB,
由于Rt△DOE与Rt△BCA关于MN成轴对称,且OA=AE,
由对称性可知,AG=GE,OA=AE=EC,
∴AG=AC,
∵S△AEF=1,
∴S△AFG=S△AEF=,
∵MN∥BC∥OD,
∴△AFG∽△ABC,
∴=()2=,
∴S△ABC=×16=8,
又∵OA=AC,
∴S△OAB=S△ABC=4,
∴S△OBC=8+4=12,
∵点B在反比例函数y=的图象上,
∴S△OBC=12=|k|,
∵k<0,
∴k=﹣24,
答案:﹣24.
18.(2021•潍坊中考)如图,在直角坐标系中,O为坐标原点,函数y=与y=(a>b>0)在第一象限的图象分别为曲线C1,C2,点P为曲线C1上的任意一点,过点P作y轴的垂线交C2于点A,作x轴的垂线交C2于点B,则阴影部分的面积S△AOB= a﹣ .(结果用a,b表示)
解:设B(m,),A(,n),则P(m,n),
∵点P为曲线C1上的任意一点,
∴mn=a,
∴阴影部分的面积S△AOB=mn﹣b﹣b﹣(m﹣)(n﹣)
=mn﹣b﹣(mn﹣b﹣b+)
=mn﹣b﹣mn+b﹣
=a﹣.
答案:a﹣.
19.(2021•广元中考)如图,点A(﹣2,2)在反比例函数y=的图象上,点M在x轴的正半轴上,点N在y轴的负半轴上,且OM=ON=5.点P(x,y)是线段MN上一动点,过点A和P分别作x轴的垂线,垂足为点D和E,连接OA、OP.当S△OAD<S△OPE时,x的取值范围是 1<x<4 .
解:过点B作BF⊥ON于F,连接OB,过点C作CG⊥OM于点G,连接OC,如图,
∵点A(﹣2,2)在反比例函数y=的图象上,
∴k=﹣4.
∴y=.
∵点A(﹣2,2),
∴AD=OD=2.
∴.
设B(a,b),则ab=﹣4,OF=﹣b,BF=a.
∴==2.
同理:S△OCG=2.
从图中可以看出当点P在线段BC上时,S△OPE>S△OBF,
即当点P在线段BC上时,满足S△OAD<S△OPE.
∵OM=ON=5,
∴N(0,﹣5),M(5,0).
设直线MN的解析式为y=mx+n,则:
,
解得:.
∴直线MN的解析式为y=x﹣5.
∴,
解得:,.
∴B(1,﹣4),C(4,﹣1).
∴x的取值范围为1<x<4.
20.(2021•玉林中考)如图,△ABC是等腰三角形,AB过原点O,底边BC∥x轴,双曲线y=过A,B两点,过点C作CD∥y轴交双曲线于点D,若S△BCD=8,则k的值是 3 .
解:过点A作AE∥y轴,交BC与点E,设点A(a,)则B(﹣a,﹣),
∴BE=2a,
∵△ABC是等腰三角形,底边BC∥x轴,CD∥y轴,
∴BC=4a,
∴点D的横坐标为3a,
∴点D的纵坐标为,
∴CD=,
∵S△BCD==8,
∴,
∴k=3,
答案:3.
冀教版九年级上册27.1 反比例函数课堂检测: 这是一份冀教版九年级上册<a href="/sx/tb_c41517_t7/?tag_id=28" target="_blank">27.1 反比例函数课堂检测</a>,文件包含专题02反比例函数系数k的几何意义专项培优训练教师版docx、专题02反比例函数系数k的几何意义专项培优训练学生版docx等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。
反比例函数系数k的几何意义-中考数学二轮知识梳理+专项练习(全国通用): 这是一份反比例函数系数k的几何意义-中考数学二轮知识梳理+专项练习(全国通用),共10页。试卷主要包含了 图像与坐标轴的关系, k 与图像下的面积, k 的几何诠释等内容,欢迎下载使用。
专题26.5反比例函数图象上点的坐标特征(重难点培优)-九年级数学下册尖子生培优必刷题人教版: 这是一份专题26.5反比例函数图象上点的坐标特征(重难点培优)-九年级数学下册尖子生培优必刷题人教版,文件包含专题265反比例函数图象上点的坐标特征重难点培优-九年级数学下册尖子生培优必刷题原卷版人教版docx、专题265反比例函数图象上点的坐标特征重难点培优-九年级数学下册尖子生培优必刷题解析版人教版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。