年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022年中考数学复习之小题狂练450题(填空题):轨迹(含答案)

    2022年中考数学复习之小题狂练450题(填空题):轨迹(含答案)第1页
    2022年中考数学复习之小题狂练450题(填空题):轨迹(含答案)第2页
    2022年中考数学复习之小题狂练450题(填空题):轨迹(含答案)第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年中考数学复习之小题狂练450题(填空题):轨迹(含答案)

    展开

    这是一份2022年中考数学复习之小题狂练450题(填空题):轨迹(含答案),共21页。

    2.(2021•宜宾)如图,⊙O的直径AB=4,P为⊙O上的动点,连结AP,Q为AP的中点,若点P在圆上运动一周,则点Q经过的路径长是 .

    3.(2021•罗湖区)如图,等边△ABC中,AB=3,点D,点E分别是边BC,CA上的动点,且BD=CE,连接AD、BE交于点F,当点D从点B运动到点C时,则点F的运动路径的长度为 .

    4.(2020•昆明)如图,边长为2cm的正六边形螺帽,中心为点O,OA垂直平分边CD,垂足为B,AB=17cm,用扳手拧动螺帽旋转90°,则点A在该过程中所经过的路径长为 cm.

    5.(2020•嘉兴)如图,有一张矩形纸条ABCD,AB=5cm,BC=2cm,点M,N分别在边AB,CD上,CN=1cm.现将四边形BCNM沿MN折叠,使点B,C分别落在点B',C'上.当点B'恰好落在边CD上时,线段BM的长为 cm;在点M从点A运动到点B的过程中,若边MB'与边CD交于点E,则点E相应运动的路径长为 cm.

    6.(2021•铁岭四模)如图,在△ABC中,∠ACB=90°,BC=AC=2,将△ABC绕BC的中点O逆时针旋转90°,得到△DEF,其中点A的运动路径AD长度为 .

    7.(2021•缙云县一模)图1是传统的手工磨豆腐设备,根据它的原理设计了图2的机械设备,磨盘半径OM=20cm,把手MQ=15cm,点O,M,Q成一直线,用长为135cm的连杆将点Q与动力装置P相连(∠PQM大小可变),点P在轨道AB上滑动并带动磨盘绕点O转动,OA⊥AB,OA=80cm.
    (1)点P与点O之间距离的取值范围是 .
    (2)若磨盘转动500周,则点P在轨道AB上滑动的路径长为 m.

    8.(2021•大庆模拟)如图,已知等腰三角形OAB,OA=OB=6,OC⊥AB于点C,AD为OB边中线,AD,OC相交于点P.在∠AOB从90°减小到30°的过程中,点P经过的路径长为 .

    9.(2020•广西)如图,在边长为2的菱形ABCD中,∠C=60°,点E,F分别是AB,AD上的动点,且AE=DF,DE与BF交于点P.当点E从点A运动到点B时,则点P的运动路径长为 .

    10.(2019•桂林)如图,在矩形ABCD中,AB=,AD=3,点P是AD边上的一个动点,连接BP,作点A关于直线BP的对称点A1,连接A1C,设A1C的中点为Q,当点P从点A出发,沿边AD运动到点D时停止运动,点Q的运动路径长为 .

    2022年中考数学复习之小题狂练450题(填空题):轨迹(10题)
    参考答案与试题解析
    一.填空题(共10小题)
    1.(2021•随州)如图,在Rt△ABC中,∠C=90°,∠ABC=30°,BC=,将△ABC绕点A逆时针旋转角α(0°<α<180°)得到△AB′C′,并使点C′落在AB边上,则点B所经过的路径长为 π .(结果保留π)

    【考点】含30度角的直角三角形;轨迹;旋转的性质.
    【专题】等腰三角形与直角三角形;平移、旋转与对称;推理能力.
    【分析】由直角三角形的性质可求∠BAC=60°,AB=3,由旋转的性质可求∠BAB'=∠BAC=60°,由弧长公式可求解.
    【解答】解:在Rt△ABC中,∠C=90°,∠ABC=30°,BC=,
    ∴∠BAC=60°,cs∠ABC=,
    ∴AB=2,
    ∵将△ABC绕点A逆时针旋转角α(0°<α<180°)得到△AB′C′,
    ∴∠BAB'=∠BAC=60°,
    ∴点B所经过的路径长==π,
    故答案为:π.
    【点评】本题考查了旋转的性质,直角三角形的性质,轨迹,弧长公式等知识,求出AB=3和∠BAB'=60°是解题的关键.
    2.(2021•宜宾)如图,⊙O的直径AB=4,P为⊙O上的动点,连结AP,Q为AP的中点,若点P在圆上运动一周,则点Q经过的路径长是 2π .

    【考点】轨迹;点与圆的位置关系.
    【专题】圆的有关概念及性质;推理能力.
    【分析】由垂径定理可得OQ⊥AP,则点Q在以AO为直径的圆上运动,即可求解.
    【解答】解:如图,连接OQ,

    ∵AB=4,
    ∴AO=2,
    ∵Q为AP的中点,
    ∴OQ⊥AP,
    ∴∠AQO=90°,
    ∴点Q在以AO为直径的圆上运动,
    ∴点Q经过的路径长为2π,
    故答案为:2π.
    【点评】本题考查了轨迹,点和圆的位置关系,确定点Q的运动轨迹是解题的关键.
    3.(2021•罗湖区)如图,等边△ABC中,AB=3,点D,点E分别是边BC,CA上的动点,且BD=CE,连接AD、BE交于点F,当点D从点B运动到点C时,则点F的运动路径的长度为 . .

    【考点】全等三角形的判定与性质;等边三角形的性质;轨迹.
    【专题】推理填空题;动点型;图形的全等;等腰三角形与直角三角形;与圆有关的计算;几何直观;运算能力;推理能力.
    【分析】根据已知条件证明△ABD≌△BCE,再得∠AFB=120°,可得点F的运动轨迹是以点O为圆心,OA为半径的弧,此时∠AOB=120°,OA=,根据弧长公式即可得点F的运动路径的长度.
    【解答】解:∵△ABC是等边三角形,
    ∴AB=BC=AC,∠ABC=∠BAC=∠BCE=60°,
    ∴在△ABD和△BCE中,

    ∴△ABD≌△BCE(SAS),
    ∴∠BAD=∠CBE,
    ∵∠AFE=∠BAD+∠FBA=∠CBE+∠FBA=∠ABC=60°,
    ∴∠AFB=120°,
    ∴点F的运动轨迹是以点O为圆心,OA为半径的弧,
    如图,

    此时∠AOB=120°,OA==,
    所以弧AB的长为:=.
    则点F的运动路径的长度为.
    故答案为:.
    【点评】本题考查了轨迹、全等三角形的判定与性质、等边三角形的性质,解决本题的关键是综合运用以上知识.
    4.(2020•昆明)如图,边长为2cm的正六边形螺帽,中心为点O,OA垂直平分边CD,垂足为B,AB=17cm,用扳手拧动螺帽旋转90°,则点A在该过程中所经过的路径长为 10π cm.

    【考点】线段垂直平分线的性质;正多边形和圆;轨迹;旋转的性质.
    【专题】正多边形与圆;解直角三角形及其应用;应用意识.
    【分析】求出OA的长,利用弧长公式计算即可.
    【解答】解:连接OD,OC.
    ∵∠DOC=60°,OD=OC,
    ∴△ODC是等边三角形,
    ∴OD=OC=DC=2(cm),
    ∵OB⊥CD,
    ∴BC=BD=(cm),
    ∴OB=BC=3(cm),
    ∵AB=17cm,
    ∴OA=OB+AB=20(cm),
    ∴点A在该过程中所经过的路径长==10π(cm),
    故答案为10π.

    【点评】本题考查弧长公式,等边三角形的判定和性质,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
    5.(2020•嘉兴)如图,有一张矩形纸条ABCD,AB=5cm,BC=2cm,点M,N分别在边AB,CD上,CN=1cm.现将四边形BCNM沿MN折叠,使点B,C分别落在点B',C'上.当点B'恰好落在边CD上时,线段BM的长为 cm;在点M从点A运动到点B的过程中,若边MB'与边CD交于点E,则点E相应运动的路径长为 (﹣) cm.

    【考点】矩形的性质;轨迹;翻折变换(折叠问题).
    【专题】平移、旋转与对称;解直角三角形及其应用;应用意识.
    【分析】第一个问题证明BM=MB′=NB′,求出NB即可解决问题.第二个问题,探究点E的运动轨迹,寻找特殊位置解决问题即可.
    【解答】解:如图1中,

    ∵四边形ABCD是矩形,
    ∴AB∥CD,
    ∴∠1=∠3,
    由翻折的性质可知:∠1=∠2,BM=MB′,
    ∴∠2=∠3,
    ∴MB′=NB′,
    ∵NB′===(cm),
    ∴BM=NB′=(cm).
    如图2中,当点M与A重合时,AE=EN,设AE=EN=xcm,
    在Rt△ADE中,则有x2=22+(4﹣x)2,解得x=,
    ∴DE=4﹣=(cm),
    如图3中,当点M运动到MB′⊥AB时,DE′的值最大,DE′=5﹣1﹣2=2(cm),
    如图4中,当点M运动到点B′落在CD时,DB′(即DE″)=5﹣1﹣=(4﹣)(cm),
    ∴点E的运动轨迹E→E′→E″,运动路径=EE′+E′B′=2﹣+2﹣(4﹣)=(﹣)(cm).


    故答案为,(﹣).
    【点评】本题考查翻折变换,矩形的性质,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考填空题中的压轴题.
    6.(2021•铁岭四模)如图,在△ABC中,∠ACB=90°,BC=AC=2,将△ABC绕BC的中点O逆时针旋转90°,得到△DEF,其中点A的运动路径AD长度为 .

    【考点】等腰直角三角形;轨迹;旋转的性质.
    【专题】推理填空题;平移、旋转与对称;运算能力;推理能力.
    【分析】连接OA,OD,根据题意可得∠AOD=90°,OC=BC=1,AC=2,利用勾股定理可得AO的长,再根据弧长公式即可求出点A的运动路径AD的长度.
    【解答】解:如图,连接OA,OD,

    根据题意可知:∠AOD=90°,OC=BC=1,AC=2,
    ∴AO===,
    ∴点A的运动路径AD长度为:=.
    故答案为:.
    【点评】本题考查了轨迹,等腰直角三角形,旋转的性质,弧长计算公式,熟练运用旋转的性质是解决本题的关键.
    7.(2021•缙云县一模)图1是传统的手工磨豆腐设备,根据它的原理设计了图2的机械设备,磨盘半径OM=20cm,把手MQ=15cm,点O,M,Q成一直线,用长为135cm的连杆将点Q与动力装置P相连(∠PQM大小可变),点P在轨道AB上滑动并带动磨盘绕点O转动,OA⊥AB,OA=80cm.
    (1)点P与点O之间距离的取值范围是 100cm≤OP≤170cm .
    (2)若磨盘转动500周,则点P在轨道AB上滑动的路径长为 900 m.

    【考点】轨迹;旋转的性质.
    【专题】三角形;推理能力.
    【分析】(1)根据三角形三边关系可得答案;
    (2)当OP取最大值和最小值时,分别求出AP的长,即可得出60cm≤AP≤150cm,从而解决问题.
    【解答】解:(1)连接OP,

    由题意OQ=35cm,BQ=135cm,
    ∴100cm≤OP≤170cm,
    故答案为:100cm≤OP≤170cm;
    (2)当OP=170cm时,
    ∵OA⊥AP,OA=80cm,
    ∴AP===150(cm),
    当OP=100cm时,
    AP===60(cm),
    ∴60cm≤AP≤150cm,
    ∴若磨盘转动500周,则点P在轨道AB上滑动的路径长为500×2×(150﹣60)=90000cm=900m,
    故答案为:900.
    【点评】本题主要考查了三角形三边关系,勾股定理等知识,读懂题意,将实际问题转化为数学问题是解题的关键.
    8.(2021•大庆模拟)如图,已知等腰三角形OAB,OA=OB=6,OC⊥AB于点C,AD为OB边中线,AD,OC相交于点P.在∠AOB从90°减小到30°的过程中,点P经过的路径长为 .

    【考点】等腰三角形的性质;轨迹.
    【专题】图形的相似;推理能力.
    【分析】过点A作AE∥OB,AE=OB,连接BE,CE,可得△DPO∽△EPA,得,则∠AOB从90°到30°变化了60°,A点的路径长=,从而解决问题.
    【解答】解:过点A作AE∥OB,AE=OB,连接BE,CE,

    ∴四边形AOBE是菱形,
    OE,AB为对角线,
    ∵AE∥OB,
    ∴∠EAP=∠PDO,∠AEO=∠EOB,
    ∴△DPO∽△EPA,
    ∵D为OB的中点,且OB=AE,
    ∴,,
    ∵D为顶点,P随着A的运动而运动,
    ∴∠AOB从90°到30°变化了60°,
    A点的路径长=,
    ∴点P经过的路径长为=,
    故答案为:.
    【点评】本题主要考查了等腰三角形的性质,相似三角形的判定与性质,弧长公式等知识,证明出是解题的关键.
    9.(2020•广西)如图,在边长为2的菱形ABCD中,∠C=60°,点E,F分别是AB,AD上的动点,且AE=DF,DE与BF交于点P.当点E从点A运动到点B时,则点P的运动路径长为 π .

    【考点】全等三角形的判定与性质;等边三角形的判定与性质;菱形的性质;轨迹.
    【专题】动点型;图形的全等;矩形 菱形 正方形;应用意识.
    【分析】如图,作△CBD的外接圆⊙O,连接OB,OD.利用全等三角形的性质证明∠DPB=120°,推出B,C,D,P四点共圆,利用弧长公式计算即可.
    【解答】解:如图,作△CBD的外接圆⊙O,连接OB,OD,

    ∵四边形ABCD是菱形,
    ∴∠A=∠C=60°,AB=BC=CD=AD,
    ∴△ABD,△BCD都是等边三角形,
    ∴BD=AD,∠BDF=∠DAE,
    ∵DF=AE,
    ∴△BDF≌△DAE(SAS),
    ∴∠DBF=∠ADE,
    ∵∠ADE+∠BDE=60°,
    ∴∠DBF+∠BDP=60°,
    ∴∠BPD=120°,
    ∵∠C=60°,
    ∴∠C+∠DPB=180°,
    ∴B,C,D,P四点共圆,
    由BC=CD=BD=2,可得OB=OD=2,
    ∵∠BOD=2∠C=120°,
    ∴点P的运动的路径的长==π.
    故答案为π.
    【点评】本题考查菱形的性质,等边三角形的判定和性质,弧长公式等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.
    10.(2019•桂林)如图,在矩形ABCD中,AB=,AD=3,点P是AD边上的一个动点,连接BP,作点A关于直线BP的对称点A1,连接A1C,设A1C的中点为Q,当点P从点A出发,沿边AD运动到点D时停止运动,点Q的运动路径长为 π .

    【考点】矩形的性质;轨迹;轴对称的性质.
    【专题】矩形 菱形 正方形;平移、旋转与对称.
    【分析】如图,连接BA1,取BC使得中点O,连接OQ,BD.利用三角形的中位线定理证明OQ==定值,推出点Q的运动轨迹是以O为圆心,OQ为半径的圆弧,圆心角为120°,即可解决问题.
    【解答】解:如图,连接BA1,取BC使得中点O,连接OQ,BD.

    ∵四边形ABCD是矩形,
    ∴∠BAD=90°,
    ∴tan∠ABD==,
    ∴∠ABD=60°,
    ∵A1Q=QC,BO=OC,
    ∴OQ=BA1=AB=,
    ∴点Q的运动轨迹是以O为圆心,OQ为半径的圆弧,圆心角为120°,
    ∴点Q的运动路径长==π.
    故答案为π.
    【点评】本题考查轨迹,矩形的性质,轴对称的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    考点卡片
    1.全等三角形的判定与性质
    (1)全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.
    (2)在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.
    2.线段垂直平分线的性质
    (1)定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线)垂直平分线,简称“中垂线”.
    (2)性质:①垂直平分线垂直且平分其所在线段. ②垂直平分线上任意一点,到线段两端点的距离相等. ③三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等.
    3.等腰三角形的性质
    (1)等腰三角形的概念
    有两条边相等的三角形叫做等腰三角形.
    (2)等腰三角形的性质
    ①等腰三角形的两腰相等
    ②等腰三角形的两个底角相等.【简称:等边对等角】
    ③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.【三线合一】
    (3)在①等腰;②底边上的高;③底边上的中线;④顶角平分线.以上四个元素中,从中任意取出两个元素当成条件,就可以得到另外两个元素为结论.
    4.等边三角形的性质
    (1)等边三角形的定义:三条边都相等的三角形叫做等边三角形,等边三角形是特殊的等腰三角形.
    ①它可以作为判定一个三角形是否为等边三角形的方法;
    ②可以得到它与等腰三角形的关系:等边三角形是等腰三角形的特殊情况.在等边三角形中,腰和底、顶角和底角是相对而言的.
    (2)等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.
    等边三角形是轴对称图形,它有三条对称轴;它的任意一角的平分线都垂直平分对边,三边的垂直平分线是对称轴.
    5.等边三角形的判定与性质
    (1)等边三角形是一个非常特殊的几何图形,它的角的特殊性给有关角的计算奠定了基础,它的边角性质为证明线段、角相等提供了便利条件.同是等边三角形又是特殊的等腰三角形,同样具备三线合一的性质,解题时要善于挖掘图形中的隐含条件广泛应用.
    (2)等边三角形的特性如:三边相等、有三条对称轴、一边上的高可以把等边三角形分成含有30°角的直角三角形、连接三边中点可以把等边三角形分成四个全等的小等边三角形等.
    (3)等边三角形判定最复杂,在应用时要抓住已知条件的特点,选取恰当的判定方法,一般地,若从一般三角形出发可以通过三条边相等判定、通过三个角相等判定;若从等腰三角形出发,则想法获取一个60°的角判定.
    6.含30度角的直角三角形
    (1)含30度角的直角三角形的性质:
    在直角三角形中,30°角所对的直角边等于斜边的一半.
    (2)此结论是由等边三角形的性质推出,体现了直角三角形的性质,它在解直角三角形的相关问题中常用来求边的长度和角的度数.
    (3)注意:①该性质是直角三角形中含有特殊度数的角(30°)的特殊定理,非直角三角形或一般直角三角形不能应用;
    ②应用时,要注意找准30°的角所对的直角边,点明斜边.
    7.等腰直角三角形
    (1)两条直角边相等的直角三角形叫做等腰直角三角形.
    (2)等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.即:两个锐角都是45°,斜边上中线、角平分线、斜边上的高,三线合一,等腰直角三角形斜边上的高为外接圆的半径R,而高又为内切圆的直径(因为等腰直角三角形的两个小角均为45°,高又垂直于斜边,所以两个小三角形均为等腰直角三角形,则两腰相等);
    (3)若设等腰直角三角形内切圆的半径r=1,则外接圆的半径R=+1,所以r:R=1:+1.
    8.菱形的性质
    (1)菱形的定义:有一组邻边相等的平行四边形叫做菱形.
    (2)菱形的性质
    ①菱形具有平行四边形的一切性质;
    ②菱形的四条边都相等;
    ③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;
    ④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.
    (3)菱形的面积计算
    ①利用平行四边形的面积公式.
    ②菱形面积=ab.(a、b是两条对角线的长度)
    9.矩形的性质
    (1)矩形的定义:有一个角是直角的平行四边形是矩形.
    (2)矩形的性质
    ①平行四边形的性质矩形都具有;
    ②角:矩形的四个角都是直角;
    ③边:邻边垂直;
    ④对角线:矩形的对角线相等;
    ⑤矩形是轴对称图形,又是中心对称图形.它有2条对称轴,分别是每组对边中点连线所在的直线;对称中心是两条对角线的交点.
    (3)由矩形的性质,可以得到直角三角形的一个重要性质,直角三角形斜边上的中线等于斜边的一半.
    10.点与圆的位置关系
    (1)点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:
    ①点P在圆外⇔d>r
    ②点P在圆上⇔d=r
    ①点P在圆内⇔d<r
    (2)点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.
    (3)符号“⇔”读作“等价于”,它表示从符号“⇔”的左端可以得到右端,从右端也可以得到左端.
    11.正多边形和圆
    (1)正多边形与圆的关系
    把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.
    (2)正多边形的有关概念
    ①中心:正多边形的外接圆的圆心叫做正多边形的中心.
    ②正多边形的半径:外接圆的半径叫做正多边形的半径.
    ③中心角:正多边形每一边所对的圆心角叫做正多边形的中心角.
    ④边心距:中心到正多边形的一边的距离叫做正多边形的边心距.
    12.轨迹
    13.轴对称的性质
    (1)如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.
    由轴对称的性质得到一下结论:
    ①如果两个图形的对应点的连线被同一条直线垂直平分,那么这两个图形关于这条直线对称;
    ②如果两个图形成轴对称,我们只要找到一对对应点,作出连接它们的线段的垂直平分线,就可以得到这两个图形的对称轴.
    (2)轴对称图形的对称轴也是任何一对对应点所连线段的垂直平分线.
    14.翻折变换(折叠问题)
    1、翻折变换(折叠问题)实质上就是轴对称变换.
    2、折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
    3、在解决实际问题时,对于折叠较为复杂的问题可以实际操作图形的折叠,这样便于找到图形间的关系.
    首先清楚折叠和轴对称能够提供给我们隐含的并且可利用的条件.解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.我们运用方程解决时,应认真审题,设出正确的未知数.
    15.旋转的性质
    (1)旋转的性质:
    ①对应点到旋转中心的距离相等. ②对应点与旋转中心所连线段的夹角等于旋转角. ③旋转前、后的图形全等. (2)旋转三要素:①旋转中心; ②旋转方向; ③旋转角度. 注意:三要素中只要任意改变一个,图形就会不一样.

    相关试卷

    中考数学复习之小题狂练450题(选择题):轨迹(含答案):

    这是一份中考数学复习之小题狂练450题(选择题):轨迹(含答案),共23页。

    2022年中考数学复习之小题狂练450题(解答题):轨迹(含答案):

    这是一份2022年中考数学复习之小题狂练450题(解答题):轨迹(含答案),共26页。试卷主要包含了的过程中点D运动的路径长等内容,欢迎下载使用。

    2022年中考数学复习之小题狂练450题(填空题):命题与定理(含答案):

    这是一份2022年中考数学复习之小题狂练450题(填空题):命题与定理(含答案),共13页。试卷主要包含了下面三个命题,给出以下命题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map