北师大版七年级下册1 同底数幂的乘法教学设计
展开这是一份北师大版七年级下册1 同底数幂的乘法教学设计,共3页。
同底数幂的乘法
共 1 课时
第
1 课时
教
学
目
标
知识与技能:使学生在了解同底数幂乘法意义的基础上,掌握幂的运算性质(或称法则),进行基本运算。
过程与方法:在推导“性质”的过程中,培养学生观察、概括与抽象的能力。
情感、态度、价值观:提高学生学习数学的兴趣。
教学重点
幂的运算性质.
教学难点
幂的运算法则
教具准备
多媒体课件
教学过程
课前预习
2.指出下列各式的底数与指数:
(1)34;(2)a3;(3)(a+b)2;(4)(-2)3;(5)-23.
其中,(-2)3与-23的含义是否相同?结果是否相等?(-2)4与-24呢?
二.合作探究
1.利用乘方的意义,提问学生,引出法则
计算103×102.
解:103×102=(10×10×10)×(10×10)(幂的义)
=10×10×10×10×10(乘法的结合律)
=105.
2.引导学生建立幂的运算法则
将上题中的底数改为a,则有
a3·a2=(aaa)·(aa)
=aaaaa
=a5,
即a3·a2=a5=a3+2.
用字母m,n表示正整数,则有
即am·an=am+n.
3.引导学生剖析法则
(1)等号左边是什么运算?
(2)等号两边的底数有什么关系?
(3)等号两边的指数有什么关系?
(4)公式中的底数a可以表示什么
(5)当三个以上同底数幂相乘时,上述法则是否成立?
要求学生叙述这个法则:同底数幂相乘,底数不变,指数相加。
注意:强调幂的底数必须相同,相乘时指数才能相加.
三.练习拓展
例1 计算:
(1) (-3)7×(-3)6; (2)(1/111)3×(1/111).
(3) -x3·x5(4) b2m·b2m+1.
拓展:
1、计算:(1)105·106;(2)a7·a3;(3)y3·y2;(4)b5·b; (5)a6·a6;(6)x5·x5.
2、计算:(1)y12·y6;(2)x10·x(3)x3·x9;
(4)10·102·104;(5)y4·y3·y2·y(6)x5·x6·x3.
四.课堂小结
1.同底数幂相乘,底数不变,指数相加,对这个法则要注重理解“同底、相乘、不变、相加”这八个字.
2.解题时要注意a的指数是1.
3.解题时,是什么运算就应用什么法则.同底数幂相乘,就应用同 底数幂的乘法法则;整式加减就要合并同类项,不能混淆.
4.-a2的底数a,不是-a.计算-a2·a2的结果是-(a2·a2)=-a4,而不是(-a)2+2=a4.若底数是多项式时,要把底数看成一个整行计算。
五.板书设计
同底数幂的乘法
复习幂 例题讲解
同底数幂乘法法则
六.布置作业
课后习题1、2
备课
笔记
教学反思
相关教案
这是一份初中北师大版1 同底数幂的乘法教学设计,共8页。教案主要包含了学情分析,教学目标分析,教学方法分析,教学过程分析,板书设计,教学设计反思等内容,欢迎下载使用。
这是一份北师大版七年级下册第一章 整式的乘除1 同底数幂的乘法教学设计,共5页。教案主要包含了先学目标,学习目标,展示学习等内容,欢迎下载使用。
这是一份初中数学北师大版七年级下册第一章 整式的乘除1 同底数幂的乘法教案设计,共4页。教案主要包含了复习与回顾,创设情境,引出课题,探索新知,巩固新知,活用法则,归纳小结等内容,欢迎下载使用。