![六年级下册数学教案-2.3 《圆柱、圆锥的复习》 ︳西师大版第1页](http://www.enxinlong.com/img-preview/1/3/12989409/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![六年级下册数学教案-2.3 《圆柱、圆锥的复习》 ︳西师大版第2页](http://www.enxinlong.com/img-preview/1/3/12989409/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
西师大版六年级下册圆锥教案及反思
展开
这是一份西师大版六年级下册圆锥教案及反思,共4页。教案主要包含了 激趣质疑,巩固所学内容,进行分层练习,全课小结等内容,欢迎下载使用。
教学目标:
1.通过复习,使学生能够清晰的了解圆柱、圆锥单元的三大知识系统,即特征、表面积、体积;
2.通过复习,使学生对有关计算公式的推导过程进一步明晰,能够熟练的运用计算公式解决实际问题;
3.在复习中,通过小组合作、精巧的练习设计等,使每个学生体会到解决问题的乐趣,增强学好数学的信心。
教学重点、难点:
复习重点:圆柱、圆锥的表面积、体积复习及有关计算
复习难点:圆柱、圆锥知识的综合运用
复习准备:多媒体课件
教学过程
一、 激趣质疑:
活动一:整理概念。
1、回忆这一单元所学内容,并自主整理。(并请学生说明这样整理的依据。)
2、学生分别汇报圆柱、圆锥的特征。
3、圆柱表面积怎样计算?(板书)说出生活中的一些实际运用的例子。4、圆柱和圆锥的体积计算公式是什么?用字母怎样表示?圆柱的体积计算怎样推导来的?
活动二:巩固所学内容,进行分层练习。
复习内容:圆柱、圆锥的特征、表面积及体积。
复习目的:
1.通过复习,使学生能够清晰的了解圆柱、圆锥单元的三大知识系统,即特征、表面积、体积;
2.通过复习,使学生对有关计算公式的推导过程进一步明晰,能够熟练的运用计算公式解决实际问题;
3.在复习中,通过小组合作、精巧的练习设计等,使每个学生体会到解决问题的乐趣,增强学好数学的信心。
复习过程:
一、回忆圆柱、圆锥单元学习的知识,并自主整理。
1.揭示课题:复习圆柱和圆锥
师:请同学回忆一下,在圆柱、圆锥单元,我们学习了哪些知识?
生口答,师依次贴出卡片
2.根据以上知识点,你能有序的将它们整理吗?。
出示整理要求:
(1)把黑板上的知识点,有序的整理在练习纸上。
(2)整理好后,在小组内交流自己的想法以及各知识点的具体内容。
3.(1)生用板出的卡片,进行调整。师请学生说明这样整理的依据。(其他学生在位置上口答)
课题:复习圆柱和圆锥
(1)学生分别汇报圆柱、圆锥的特征。
(2)圆柱表面积怎样计算?(板书)生活中还有一些实际运用的例子,你能举一些吗?(制作油桶多少铁皮,通风管等[这是生活中的实际运用])怎样求圆柱的侧面积?(板书计算公式)出示自制的长方体通风管,让学生思考如何计算铁皮?
(3)圆柱和圆锥的体积计算公式是什么?用字母怎样表示?圆柱的体积计算怎样推导来的?(师出示教具,回答学生演示教具,师问是这样理解的吗?)
师(等生说完):大家看,拼成的长方体表面积有没有变化?
生:长方体表面积增加了两个面,是两个长方形,长是圆柱的高,宽是底面半径。
师:说得不错,圆锥的体积计算公式,又是怎样推导来的呢?(生口述推导过程)这里的圆柱和圆锥容器有怎样的关系,缺少这样的联系,能够推导出圆锥体积公式吗?
师(拿圆柱体木料):如果把这个圆柱木料,削成一个最大的圆锥,你能知道哪些数学知识?
二、巩固所学内容,进行分层练习。
师:正所谓学以致用,能用整理的这些知识解决问题吗?
1.从上面看下面的每个立体图形,分别看到的是哪个图形?请用线连一连。
师:如果是从正面看,又会怎样呢?(圆柱正面看是长方形,师自言自语“是下面的长方形吗?”长方形的长和宽各是什么?(长是圆柱的直径,宽是圆柱的高);正方形、长方形从正面看又是怎样的图形呢?圆锥从正面看呢?两条腰在哪儿?底和高分别是什么?)
2.当机立断。
(对的请在括号内打“√”,错的打“×” )(允许学生用手势)
(1)圆柱体的底面直径是3厘米,高是9.42厘米,它的侧面展开后是一个正方形。 ( )
小结:用底面直径乘3.14等于底面周长,当底面周长等于高时,圆柱侧面展开是正方形。
(2)圆锥的体积是圆柱的。 ( )
小结:没有强调等底等高,能举例吗?
(3)一瓶罐装可口可乐的体积大约是400立方厘米,用24瓶装满一箱,这只箱子的容积大约是9600立方厘米。 ( )
小结:因为24瓶可口可乐之间是有缝隙的,所以箱子的容积应该大于9600立方厘米。对,全部可乐的底面,都是圆形,根据五年级学习的密铺知识,我们知道圆是不能密铺的,所以这些圆柱形饮料之间一定有缝隙。(这样设计的目的是为了把所学的内容与生活结合起来)
3.正确选择。(请在括号内选择正确答案的序号)(允许学生用数字)
(1)做一个圆柱形烟囱要用多少铁皮,是求圆柱的( )。
A.侧面积 B.表面积 C.体积
小结:由于圆柱形柱子上、下面粉刷不了,所以求的是侧面积。
4.快速抢答:口答下面的问题,并列式计算。(基础知识的进一步巩固)
一个圆柱形水桶,底面半径2分米,高6分米。
① 给这个水桶加个盖,是求哪个部分?
小结:加个盖指的是圆柱的一个底面,列式为:2×2×3.14=12.56(平方分米)
② 给这个水桶加个箍,是求哪个部分?
小结:加个箍,指的是一圈的周长,列式为:2×2×3.14=12.56(分米)
③ 给这个水桶的外面涂上油漆,是求哪个部分?
小结:水桶由于是无盖的,所以涂油漆指的是一个底面积+一个侧面积,列式为:
2×2×3.14+2×2×3.14×6=87.92(平方分米)
④这个水桶能装多少水,是求哪个部分?
小结:求水桶能装多少水,指的是水桶的容积,列式为:2×2×3.14×6=75.36(立方分米)
提问:通过练习,你有什么体会想和大家说吗?
5.实际运用。(数学知识来源于生活又应用于生活)
(1)有一个滚筒刷,它的底面直径是4厘米,长3分米,它滚动一周刷过的墙面是多少平方厘米?
师:滚筒刷见过吗?它是(圆柱形)用来刷墙面涂料的。这里所说的问题,是求圆柱的什么吗?解题时,还要注意什么?
独立完成。
3分米=30厘米 4×3.14×30=376.8(平方厘米)
答:它滚动一周刷过的墙面是376.8平方厘米。
师:像类似的还有什么例子?
(2)学校有一个圆柱形状的储水箱,它的侧面由
一块边长6.28分米的正方形铁皮围成。这个储水
箱最多能储水多少升?(接缝处略去不计)
6.28÷3.14÷2=1(分米)
1×1×3.14×6.28=19.7192(立方分米)
19.7192立方分米=19.7192升
答:这个储水箱最大储水19.7192升。
6.拓展延伸(让好学生吃饱)
(1)一个圆锥形容器,底面积是45平方厘米,高是16厘米。把它装满水后,倒入一个长10厘米,宽6厘米长方体容器中,此时的水高多少厘米?
方法一:45×16×=240(立方厘米) 240÷(10×6)=4(厘米)
方法二:解:设此时水高x厘米。
10×6×x=45×16×
x=4
答:此时水高4厘米。
(2)有一张长方体铁皮(如下图),剪下图中两个圆及一块长方形,正好可以做成一个圆柱体,这个圆柱体的底面半径为2厘米,那么圆柱的体积是多少立方厘米?
2×2=4(厘米)
2×2×3.14×4=50.24(立方厘米)
答:圆柱的体积是50.24立方厘米。
7.对比提高。
(1)一个圆柱高10厘米,把它截成两段,表面积增加了25.12平方厘米,原来圆柱的体积是多少立方厘米?
(2)一个圆柱高10厘米,接上4厘米的一段后,表面积增加了25.12平方厘米,求原来圆柱的体积是多少立方厘米?
提问:这两题中都有表面积的变化,它们的意思一样吗?
生:第一题中的表面积增加,指的是底面积增加了两个;第二题中表面积增加,指的实际上是侧面积增加。(师演示变化)
提问:那么在计算体积时,又分别是怎样考虑的呢?
生独立完成。
三、全课小结:
师:同学们,今天我们一同复习了什么知识,你掌握了哪些?
板书设计:
课题:圆柱、圆锥整理和复习
圆柱的特征 圆柱表面积=1个侧面积+2个底面积
圆柱侧面积=底面周长×高
圆柱体积=底面积×高
V=sh
圆锥的特征 圆锥体积=底面积×高×
V=sh
相关教案
这是一份六年级下册数学教案2.3 圆柱的体积3_苏教版,共35页。教案主要包含了教学目标,拓展延伸等内容,欢迎下载使用。
这是一份六年级下册数学教案2.1 圆柱和圆锥的认识_苏教版,共35页。教案主要包含了创设情景 引入课题,动手实践 探索特征,总结回顾 拓展延伸等内容,欢迎下载使用。
这是一份六年级下册数学教案2 圆柱和圆锥∣苏教版,共35页。教案主要包含了创设情境,导入新课,教学新课,巩固练习,实践,课堂小结等内容,欢迎下载使用。
![英语朗读宝](http://www.enxinlong.com/img/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)