人教A版 (2019)选择性必修 第一册1.4 空间向量的应用教学演示ppt课件
展开直线的方向向量:与直线平行的非零向量
平面的法向量:与平面垂直的向量
两向量数量积的定义:a·b=|a|·|b|·cs
例2如图,在棱长为1的正四面体(四个面都是正三角形)ABCD中,M,N分别为BC,AD的中点,求直线AM和CN夹角的余弦值.
例2如图,在棱长为1的正四面体(四个面都是正三角形)ABCD中,M,N分别为BC,AD的中点,求直线AM和CN夹角的余弦值.
利用向量方法求两条异面直线所成的角
利用向量方法求直线与平面所成的角
例5如图,在直三棱柱ABC-A1B1C1中,AC=CB=2,AA1=3,∠ACB=90°,P为BC的中点,点Q, R分别在棱AA1,BB1上,A1Q=2AQ,BR=2RB1.求平面PQR与平面A1B1C1夹角的余弦值.
分析:因为平面PQR与平面A1B1C1的夹角可以转化为平面PQR与平面A1B1C1的法向量的夹角,所以只需要求出这两个平面的法向量的夹角即可.
反思:此类题典型的说明了向量法与几何法各有什么优劣。结合前面几节课的内容。 几何法:缺点:几何法复杂难懂,需要空间想象能力超强。几何法思维的发生发展难,几何法技巧性高个性强,很不容易想到。 优点:几何法证出来了我们就知道为什么能证出来,几何法能看清几何体的结构本质。几何法是垂直我们就知道为什么垂直,因为有图形为证。也因为几何法我们是通过视觉,向量法却是大脑的抽象思维。 向量法:优点:向量法简单明了没几步。此题可看出向量法的威力和优越。向量法是证出来了也不知道为什么能证出来。向量法表面上是代数运算实际上是几何运算,几何运算被隐藏起来了。向量法证明是空荡荡的,找不到一个坚实的支撑点。向量法看不清楚。 结合前几节课的题可看出向量法是只披着羊皮的狼。向量法求解与证明可以有统一的模式,几何法却是技巧性高个性强。 缺点:运算量很大。
人教A版 (2019)选择性必修 第一册1.4 空间向量的应用获奖课件ppt: 这是一份人教A版 (2019)选择性必修 第一册1.4 空间向量的应用获奖课件ppt,共47页。PPT课件主要包含了常考题型,解题方法等内容,欢迎下载使用。
高中人教A版 (2019)1.4 空间向量的应用优秀课件ppt: 这是一份高中人教A版 (2019)1.4 空间向量的应用优秀课件ppt,共34页。PPT课件主要包含了一两个平面的夹角,不大于90°,即时巩固,因此CM⊥SN,反思感悟,两个平面的夹角等内容,欢迎下载使用。
人教A版 (2019)选择性必修 第一册1.4 空间向量的应用试讲课ppt课件: 这是一份人教A版 (2019)选择性必修 第一册1.4 空间向量的应用试讲课ppt课件,共25页。PPT课件主要包含了即时巩固,点到直线的距离,x+y+z=1等内容,欢迎下载使用。