![2020年山东省各市中考数学真题汇编压轴题:《圆》(及答案)第1页](http://www.enxinlong.com/img-preview/2/3/12992859/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2020年山东省各市中考数学真题汇编压轴题:《圆》(及答案)第2页](http://www.enxinlong.com/img-preview/2/3/12992859/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2020年山东省各市中考数学真题汇编压轴题:《圆》(及答案)第3页](http://www.enxinlong.com/img-preview/2/3/12992859/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2020年山东省各市中考数学真题汇编压轴题:《圆》(及答案)
展开
这是一份2020年山东省各市中考数学真题汇编压轴题:《圆》(及答案),共19页。试卷主要包含了阅读理解等内容,欢迎下载使用。
1.(2020•日照)阅读理解:
如图1,Rt△ABC中,a,b,c分别是∠A,∠B,∠C的对边,∠C=90°,其外接圆半径为R.根据锐角三角函数的定义:sinA=,sinB=,可得==c=2R,
即:===2R,(规定sin90°=1).
探究活动:
如图2,在锐角△ABC中,a,b,c分别是∠A,∠B,∠C的对边,其外接圆半径为R,那么: (用>、=或<连接),并说明理由.
事实上,以上结论适用于任意三角形.
初步应用:
在△ABC中,a,b,c分别是∠A,∠B,∠C的对边,∠A=60°,∠B=45°,a=8,求b.
综合应用:
如图3,在某次数学活动中,小凤同学测量一古塔CD的高度,在A处用测角仪测得塔顶C的仰角为15°,又沿古塔的方向前行了100m到达B处,此时A,B,D三点在一条直线上,在B处测得塔顶C的仰角为45°,求古塔CD的高度(结果保留小数点后一位).(≈1.732,sin15°=)
2.(2020•济南)如图,AB为⊙O的直径,点C是⊙O上一点,CD与⊙O相切于点C,过点A作AD⊥DC,连接AC,BC.
(1)求证:AC是∠DAB的角平分线;
(2)若AD=2,AB=3,求AC的长.
3.(2020•东营)如图,在△ABC中,以AB为直径的⊙O交AC于点M,弦MN∥BC交AB于点E,且ME=3,AE=4,AM=5.
(1)求证:BC是⊙O的切线;
(2)求⊙O的直径AB的长度.
4.(2020•淄博)如图,△ABC内接于⊙O,AD平分∠BAC交BC边于点E,交⊙O于点D,过点A作AF⊥BC于点F,设⊙O的半径为R,AF=h.
(1)过点D作直线MN∥BC,求证:MN是⊙O的切线;
(2)求证:AB•AC=2R•h;
(3)设∠BAC=2α,求的值(用含α的代数式表示).
5.(2020•烟台)如图,在▱ABCD中,∠D=60°,对角线AC⊥BC,⊙O经过点A,B,与AC交于点M,连接AO并延长与⊙O交于点F,与CB的延长线交于点E,AB=EB.
(1)求证:EC是⊙O的切线;
(2)若AD=2,求的长(结果保留π).
6.(2020•威海)如图,△ABC的外角∠BAM的平分线与它的外接圆相交于点E,连接BE,CE,过点E作EF∥BC,交CM于点D.
求证:(1)BE=CE;
(2)EF为⊙O的切线.
7.(2020•潍坊)如图,AB为⊙O的直径,射线AD交⊙O于点F,点C为劣弧的中点,过点C作CE⊥AD,垂足为E,连接AC.
(1)求证:CE是⊙O的切线;
(2)若∠BAC=30°,AB=4,求阴影部分的面积.
8.(2020•临沂)已知⊙O1的半径为r1,⊙O2的半径为r2.以O1为圆心,以r1+r2的长为半径画弧,再以线段O1O2的中点P为圆心,以O1O2的长为半径画弧,两弧交于点A,连接O1A,O2A,O1A交⊙O1于点B,过点B作O2A的平行线BC交O1O2于点C.
(1)求证:BC是⊙O2的切线;
(2)若r1=2,r2=1,O1O2=6,求阴影部分的面积.
9.(2020•菏泽)如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,过点D作⊙O的切线交AC于点E.
(1)求证:DE⊥AC;
(2)若⊙O的半径为5,BC=16,求DE的长.
10.(2020•枣庄)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠BAC=2∠CBF.
(1)求证:BF是⊙O的切线;
(2)若⊙O的直径为4,CF=6,求tan∠CBF.
11.(2020•德州)如图,点C在以AB为直径的⊙O上,点D是半圆AB的中点,连接AC,BC,AD,BD.过点D作DH∥AB交CB的延长线于点H.
(1)求证:直线DH是⊙O的切线;
(2)若AB=10,BC=6,求AD,BH的长.
12.(2020•聊城)如图,在△ABC中,AB=BC,以△ABC的边AB为直径作⊙O,交AC于点D,过点D作DE⊥BC,垂足为点E.
(1)试证明DE是⊙O的切线;
(2)若⊙O的半径为5,AC=6,求此时DE的长.
参考答案
1.解:探究活动:==,
理由如下:
如图2,过点C作直径CD交⊙O于点D,连接BD,
∴∠A=∠D,∠DBC=90°,
∴sinA=sinD,sinD=,
∴=,
同理可证:=2R,=2R,
∴===2R;
故答案为:=,=,=.
初步应用:
∵==2R,
∴,
∴.
综合应用:
由题意得:∠D=90°,∠A=15°,∠DBC=45°,AB=100,
∴∠ACB=30°.
设古塔高DC=x,则BC=,
∵,
∴,
∴,
∴,
∴古塔高度约为36.6m.
2.解:(1)证明:连接OC,如图,
∵CD与⊙O相切于点C,
∴∠OCD=90°,
∴∠ACD+∠ACO=90°,
∵AD⊥DC,
∴∠ADC=90°,
∴∠ACD+∠DAC=90°,
∴∠ACO=∠DAC,
∵OA=OC,
∴∠OAC=∠OCA,
∴∠DAC=∠OAC,
∴AC是∠DAB的角平分线;
(2)∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠D=∠ACB=90°,
∵∠DAC=∠BAC,
∴Rt△ADC∽Rt△ACB,
∴=,
∴AC2=AD•AB=2×3=6,
∴AC=.
3.(1)证明:∵在△AME中,ME=3,AE=4,AM=5,
∴AM2=ME2+AE2,
∴△AME是直角三角形,
∴∠AEM=90°,
又∵MN∥BC,
∴∠ABC=∠AEM=90°,
∴AB⊥BC,
∵AB为直径,
∴BC是⊙O的切线;
(2)解:连接OM,如图,设⊙O的半径是r,
在Rt△OEM中,OE=AE﹣OA=4﹣r,ME=3,OM=r,
∵OM2=ME2+OE2,
∴r2=32+(4﹣r)2,
解得:r=,
∴AB=2r=.
4.解:(1)如图1,连接OD,
∵AD平分∠BAC,
∴∠BAD=∠CAD,
∴=,
又∵OD是半径,
∴OD⊥BC,
∵MN∥BC,
∴OD⊥MN,
∴MN是⊙O的切线;
(2)如图2,连接AO并延长交⊙O于H,连接BH,
∵AH是直径,
∴∠ABH=90°=∠AFC,
又∵∠AHB=∠ACF,
∴△ACF∽△AHB,
∴,
∴AB•AC=AF•AH=2R•h;
(3)如图3,过点D作DQ⊥AB于Q,DP⊥AC,交AC延长线于P,连接CD,
∵∠BAC=2α,AD平分∠BAC,
∴∠BAD=∠CAD=α,
∴=,
∴BD=CD,
∵∠BAD=∠CAD,DQ⊥AB,DP⊥AC,
∴DQ=DP,
∴Rt△DQB≌Rt△DPC(HL),
∴BQ=CP,
∵DQ=DP,AD=AD,
∴Rt△DQA≌Rt△DPA(HL),
∴AQ=AP,
∴AB+AC=AQ+BQ+AC=2AQ,
∵cs∠BAD=,
∴AD=,
∴==2csα.
5.(1)证明:连接OB,连接OM,
∵四边形ABCD是平行四边形,
∴∠ABC=∠D=60°,
∵AC⊥BC,
∴∠ACB=90°,
∴∠BAC=30°,
∵BE=AB,
∴∠E=∠BAE,
∵∠ABC=∠E+∠BAE=60°,
∴∠E=∠BAE=30°,
∵OA=OB,
∴∠ABO=∠OAB=30°,
∴∠OBC=30°+60°=90°,
∴OB⊥CE,
∴EC是⊙O的切线;
(2)解:∵四边形ABCD是平行四边形,
∴BC=AD=2,
过O作OH⊥AM于H,
则四边形OBCH是矩形,
∴OH=BC=2,
∴OA==4,∠AOM=2∠AOH=60°,
∴的长度==.
6.证明:(1)∵四边形ACBE是圆内接四边形,
∴∠EAM=∠EBC,
∵AE平分∠BAM,
∴∠BAE=∠EAM,
∵∠BAE=∠BCE,
∴∠BCE=∠EAM,
∴∠BCE=∠EBC,
∴BE=CE;
(2)如图,连接EO并延长交BC于H,连接OB,OC,
∵OB=OC,EB=EC,
∴直线EO垂直平分BC,
∴EH⊥BC,
∴EH⊥EF,
∵OE是⊙O的半径,
∴EF为⊙O的切线.
7.解:(1)连接BF,OC,
∵AB是⊙O的直径,
∴∠AFB=90°,即BF⊥AD,
∵CE⊥AD,
∴BF∥CE,
连接OC,
∵点C为劣弧的中点,
∴OC⊥BF,
∵BF∥CE,
∴OC⊥CE,
∵OC是⊙O的半径,
∴CE是⊙O的切线;
(2)连接OF,CF,
∵OA=OC,∠BAC=30°,
∴∠BOC=60°,
∵点C为劣弧的中点,
∴,
∴∠FOC=∠BOC=60°,
∵OF=OC,
∴∠OCF=∠COB,
∴CF∥AB,
∴S△ACF=S△COF,
∴阴影部分的面积=S扇形COF,
∵AB=4,
∴FO=OC=OB=2,
∴S扇形FOC=,
即阴影部分的面积为:.
8.(1)证明:连接AP,
∵以线段O1O2的中点P为圆心,以O1O2的长为半径画弧,
∴O1P=AP=O2P=,
∴∠O1AO2=90°,
∵BC∥O2A,
∴∠O1BC=∠O1AO2=90°,
过点O2作O2D⊥BC交BC的延长线于点D,
∴四边形ABDO2是矩形,
∴AB=O2D,
∵O1A=r1+r2,
∴O2D=r2,
∴BC是⊙O2的切线;
(2)解:∵r1=2,r2=1,O1O2=6,
∴O1A=,
∴∠AO2C=30°,
∵BC∥O2A,
∴∠BCE=AO2C=30°,
∴O1C=2O1B=4,
∴BC===2,
∴S阴影===﹣=2﹣π.
9.(1)证明:连接AD、OD.
∵AB是圆O的直径,
∴∠ADB=90°.
∴∠ADO+∠ODB=90°.
∵DE是圆O的切线,
∴OD⊥DE.
∴∠EDA+∠ADO=90°.
∴∠EDA=∠ODB.
∵OD=OB,
∴∠ODB=∠OBD.
∴∠EDA=∠OBD.
∵AC=AB,AD⊥BC,
∴∠CAD=∠BAD.
∵∠DBA+∠DAB=90°,
∴∠EAD+∠EDA=90°.
∴∠DEA=90°.
∴DE⊥AC.
(2)解:∵∠ADB=90°,AB=AC,
∴BD=CD,
∵⊙O的半径为5,BC=16,
∴AC=10,CD=8,
∴AD==6,
∵S△ADC=AC•DE,
∴DE===.
10.(1)证明:连接AE,
∵AB是⊙O的直径,
∴∠AEB=90°,
∴∠1+∠2=90°.
∵AB=AC,
∴2∠1=∠CAB.
∵∠BAC=2∠CBF,
∴∠1=∠CBF
∴∠CBF+∠2=90°
即∠ABF=90°
∵AB是⊙O的直径,
∴直线BF是⊙O的切线;
(2)解:过C作CH⊥BF于H,
∵AB=AC,⊙O的直径为4,
∴AC=4,
∵CF=6,∠ABF=90°,
∴BF===2,
∵∠CHF=∠ABF,∠F=∠F,
∴△CHF∽△ABF,
∴=,
∴=,
∴CH=,
∴HF===,
∴BH=BF﹣HF=2﹣=,
∴tan∠CBF===.
11.(1)证明:连接OD,
∵AB为⊙O的直径,点D是半圆AB的中点,
∴∠AOD=AOB=90°,
∵DH∥AB,
∴∠ODH=90°,
∴OD⊥DH,
∴直线DH是⊙O的切线;
(2)解:连接CD,
∵AB为⊙O的直径,
∴∠ADB=∠ACB=90°,
∵点D是半圆AB的中点,
∴=,
∴AD=DB,
∴△ABD是等腰直角三角形,
∵AB=10,
∴AD=10sin∠ABD=10sin45°=10×=5,
∵AB=10,BC=6,
∴AC==8,
∵四边形ABCD是圆内接四边形,
∴∠CAD+∠CBD=180°,
∵∠DBH+∠CBD=180°,
∴∠CAD=∠DBH,
由(1)知∠AOD=90°,∠OBD=45°,
∴∠ACD=45°,
∵DH∥AB,
∴∠BDH=∠OBD=45°,
∴∠ACD=∠BDH,
∴△ACD∽△BDH,
∴,
∴=,
解得:BH=.
12.(1)证明:连接OD、BD,
∵AB是⊙O直径,
∴∠ADB=90°,
∴BD⊥AC,
∵AB=BC,
∴D为AC中点,
∵OA=OB,
∴OD∥BC,
∵DE⊥BC,
∴DE⊥OD,
∵OD为半径,
∴DE是⊙O的切线;
(2)由(1)知BD是AC的中线,
∴AD=CD==3,
∵⊙O的半径为5,
∴AB=10,
∴BD===,
∵AB=AC,
∴∠A=∠C,
∵∠ADB=∠CED=90°,
∴△CDE∽△ABD,
∴,即=,
∴DE=3.
相关试卷
这是一份2023年山东省各市中考数学真题汇编——方程与不等式(含答案),共22页。
这是一份2023年辽宁省各市中考数学试题真题汇编——函数(含答案),共58页。试卷主要包含了的图象经过B,C两点等内容,欢迎下载使用。
这是一份2023年湖南省各市中考数学试题真题汇编——函数(含答案),共22页。试卷主要包含了选择题,填空题,综合题等内容,欢迎下载使用。