终身会员
搜索
    上传资料 赚现金

    2021-2022学年安徽宿州埇桥区重点中学中考数学最后冲刺浓缩精华卷含解析

    立即下载
    加入资料篮
    2021-2022学年安徽宿州埇桥区重点中学中考数学最后冲刺浓缩精华卷含解析第1页
    2021-2022学年安徽宿州埇桥区重点中学中考数学最后冲刺浓缩精华卷含解析第2页
    2021-2022学年安徽宿州埇桥区重点中学中考数学最后冲刺浓缩精华卷含解析第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年安徽宿州埇桥区重点中学中考数学最后冲刺浓缩精华卷含解析

    展开

    这是一份2021-2022学年安徽宿州埇桥区重点中学中考数学最后冲刺浓缩精华卷含解析,共27页。试卷主要包含了把一副三角板如图,若分式有意义,则x的取值范围是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.某城年底已有绿化面积公顷,经过两年绿化,到年底增加到公顷,设绿化面积平均每年的增长率为,由题意所列方程正确的是( ).
    A. B. C. D.
    2.四个有理数﹣1,2,0,﹣3,其中最小的是( )
    A.﹣1 B.2 C.0 D.﹣3
    3.如图,AB是⊙O的直径,CD是⊙O的弦,∠ACD=30°,则∠BAD为( )

    A.30° B.50° C.60° D.70°
    4.如图①是半径为2的半圆,点C是弧AB的中点,现将半圆如图②方式翻折,使得点C与圆心O重合,则图中阴影部分的面积是( )

    A. B.﹣ C.2+ D.2﹣
    5.把三角形按如图所示的规律拼图案,其中第①个图案中有1个三角形,第②个图案中有4个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为(  )

    A.15 B.17 C.19 D.24
    6.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E等于(  )

    A.42° B.28° C.21° D.20°
    7.如图,已知直线AD是⊙O的切线,点A为切点,OD交⊙O于点B,点C在⊙O上,且∠ODA=36°,则∠ACB的度数为(  )

    A.54° B.36° C.30° D.27°
    8.小宇妈妈上午在某水果超市买了 16.5 元钱的葡萄,晚上散步经过该水果超市时,发现同一批葡萄的价格降低了 25% ,小宇妈妈又买了 16.5 元钱的葡萄,结果恰好比早上多了 0.5 千克.若设早上葡萄的价格是 x 元/千克,则可列方程( )
    A. B.
    C. D.
    9.把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=41°,∠D=30°,斜边AB=4,CD=1.把三角板DCE绕着点C顺时针旋转11°得到△D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为( )

    A. B. C. D.4
    10.若分式有意义,则x的取值范围是( )
    A.x>3 B.x<3 C.x≠3 D.x=3
    11.下列现象,能说明“线动成面”的是(  )
    A.天空划过一道流星
    B.汽车雨刷在挡风玻璃上刷出的痕迹
    C.抛出一块小石子,石子在空中飞行的路线
    D.旋转一扇门,门在空中运动的痕迹
    12.将抛物线y=﹣(x+1)2+4平移,使平移后所得抛物线经过原点,那么平移的过程为(  )
    A.向下平移3个单位 B.向上平移3个单位
    C.向左平移4个单位 D.向右平移4个单位
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.已知是二元一次方程组的解,则m+3n的立方根为__.
    14.分解因式:x2-9=_ ▲ .
    15.如图,▱ABCD中,M、N是BD的三等分点,连接CM并延长交AB于点E,连接EN并延长交CD于点F,以下结论:
    ①E为AB的中点;
    ②FC=4DF;
    ③S△ECF=;
    ④当CE⊥BD时,△DFN是等腰三角形.
    其中一定正确的是_____.

    16.如图,BD是矩形ABCD的一条对角线,点E,F分别是BD,DC的中点.若AB=4,BC=3,则AE+EF的长为_____.

    17.某校准备从甲、乙、丙、丁四个科创小组中选出一组,参加区青少年科技创新大赛,表格反映的是各组平时成绩的平均数(单位:分)及方差S2,如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是_____.






    7
    8
    8
    7
    s2
    1
    1.2
    0.9
    1.8

    18.若一个圆锥的底面圆的周长是cm,母线长是,则该圆锥的侧面展开图的圆心角度数是_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)某水果批发市场香蕉的价格如下表
    购买香蕉数(千克)
    不超过20千克
    20千克以上但不超过40千克
    40千克以上
    每千克的价格
    6元
    5元
    4元
    张强两次共购买香蕉50千克,已知第二次购买的数量多于第一次购买的数量,共付出264元,请问张强第一次,第二次分别购买香蕉多少千克?
    20.(6分)已知抛物线经过点,.把抛物线与线段围成的封闭图形记作.
    (1)求此抛物线的解析式;
    (2)点为图形中的抛物线上一点,且点的横坐标为,过点作轴,交线段于点.当为等腰直角三角形时,求的值;
    (3)点是直线上一点,且点的横坐标为,以线段为边作正方形,且使正方形与图形在直线的同侧,当,两点中只有一个点在图形的内部时,请直接写出的取值范围.

    21.(6分)如图①,在四边形ABCD中,AC⊥BD于点E,AB=AC=BD,点M为BC中点,N为线段AM上的点,且MB=MN.

    (1)求证:BN平分∠ABE;
    (2)若BD=1,连结DN,当四边形DNBC为平行四边形时,求线段BC的长;
    (3)如图②,若点F为AB的中点,连结FN、FM,求证:△MFN∽△BDC.
    22.(8分)如图,在⊙O的内接四边形ABCD中,∠BCD=120°,CA平分∠BCD.
    (1)求证:△ABD是等边三角形;
    (2)若BD=3,求⊙O的半径.

    23.(8分)如图,在四边形ABCD中,∠BAC=∠ACD=90°,∠B=∠D.
    (1)求证:四边形ABCD是平行四边形;
    (2)若AB=3cm,BC=5cm,AE=AB,点P从B点出发,以1cm/s的速度沿BC→CD→DA运动至A点停止,则从运动开始经过多少时间,△BEP为等腰三角形.

    24.(10分)小强想知道湖中两个小亭A、B之间的距离,他在与小亭A、B位于同一水平面且东西走向的湖边小道I上某一观测点M处,测得亭A在点M的北偏东30°,亭B在点M的北偏东60°,当小明由点M沿小道I向东走60米时,到达点N处,此时测得亭A恰好位于点N的正北方向,继续向东走30米时到达点Q处,此时亭B恰好位于点Q的正北方向,根据以上测量数据,请你帮助小强计算湖中两个小亭A、B之间的距离.

    25.(10分)如图,矩形中,对角线,相交于点,且,.动点,分别从点,同时出发,运动速度均为lcm/s.点沿运动,到点停止.点沿运动,点到点停留4后继续运动,到点停止.连接,,,设的面积为(这里规定:线段是面积为0的三角形),点的运动时间为.
    (1)求线段的长(用含的代数式表示);
    (2)求时,求与之间的函数解析式,并写出的取值范围;
    (3)当时,直接写出的取值范围.

    26.(12分)计算:.
    27.(12分)如图,已知AD是的中线,M是AD的中点,过A点作,CM的延长线与AE相交于点E,与AB相交于点F.

    (1)求证:四边形是平行四边形;
    (2)如果,求证四边形是矩形.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    先用含有x的式子表示2015年的绿化面积,进而用含有x的式子表示2016年的绿化面积,根据等式关系列方程即可.
    【详解】
    由题意得,绿化面积平均每年的增长率为x,则2015年的绿化面积为300(1+x),2016年的绿化面积为300(1+x)(1+x),经过两年的增长,绿化面积由300公顷变为363公顷.可列出方程:300(1+x)2=363.故选B.
    【点睛】
    本题主要考查一元二次方程的应用,找准其中的等式关系式解答此题的关键.
    2、D
    【解析】
    解:∵-1<-1<0<2,∴最小的是-1.故选D.
    3、C
    【解析】
    试题分析:连接BD,∵∠ACD=30°,∴∠ABD=30°,
    ∵AB为直径,∴∠ADB=90°,∴∠BAD=90°﹣∠ABD=60°.
    故选C.

    考点:圆周角定理
    4、D
    【解析】
    连接OC交MN于点P,连接OM、ON,根据折叠的性质得到OP=OM,得到∠POM=60°,根据勾股定理求出MN,结合图形计算即可.
    【详解】
    解:连接OC交MN于点P,连接OM、ON,

    由题意知,OC⊥MN,且OP=PC=1,
    在Rt△MOP中,∵OM=2,OP=1,
    ∴cos∠POM==,AC==,
    ∴∠POM=60°,MN=2MP=2,
    ∴∠AOB=2∠AOC=120°,
    则图中阴影部分的面积=S半圆-2S弓形MCN
    =×π×22-2×(-×2×1)
    =2- π,
    故选D.
    【点睛】
    本题考查了轴对称的性质的运用、勾股定理的运用、三角函数值的运用、扇形的面积公式的运用、三角形的面积公式的运用,解答时运用轴对称的性质求解是关键.
    5、D
    【解析】
    由图可知:第①个图案有三角形1个,第②图案有三角形1+3=4个,第③个图案有三角形1+3+4=8个,第④个图案有三角形1+3+4+4=12,…第n个图案有三角形4(n﹣1)个(n>1时),由此得出规律解决问题.
    【详解】
    解:解:∵第①个图案有三角形1个,
    第②图案有三角形1+3=4个,
    第③个图案有三角形1+3+4=8个,

    ∴第n个图案有三角形4(n﹣1)个(n>1时),
    则第⑦个图中三角形的个数是4×(7﹣1)=24个,
    故选D.
    【点睛】
    本题考查了规律型:图形的变化类,根据给定图形中三角形的个数,找出an=4(n﹣1)是解题的关键.
    6、B
    【解析】
    利用OB=DE,OB=OD得到DO=DE,则∠E=∠DOE,根据三角形外角性质得∠1=∠DOE+∠E,所以∠1=2∠E,同理得到∠AOC=∠C+∠E=3∠E,然后利用∠E=∠AOC进行计算即可.
    【详解】
    解:连结OD,如图,

    ∵OB=DE,OB=OD,
    ∴DO=DE,
    ∴∠E=∠DOE,
    ∵∠1=∠DOE+∠E,
    ∴∠1=2∠E,
    而OC=OD,
    ∴∠C=∠1,
    ∴∠C=2∠E,
    ∴∠AOC=∠C+∠E=3∠E,
    ∴∠E=∠AOC=×84°=28°.
    故选:B.
    【点睛】
    本题考查了圆的认识:掌握与圆有关的概念( 弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了等腰三角形的性质.
    7、D
    【解析】解:∵AD为圆O的切线,∴AD⊥OA,即∠OAD=90°,∵∠ODA=36°,∴∠AOD=54°,∵∠AOD与∠ACB都对,∴∠ACB=∠AOD=27°.故选D.
    8、B
    【解析】
    分析:根据数量=,可知第一次买了千克,第二次买了,根据第二次恰好比第一次多买了 0.5 千克列方程即可.
    详解:设早上葡萄的价格是 x 元/千克,由题意得,
    .
    故选B.
    点睛:本题考查了分式方程的实际应用,解题的关键是读懂题意,找出列方程所用到的等量关系.
    9、A
    【解析】
    试题分析:由题意易知:∠CAB=41°,∠ACD=30°.
    若旋转角度为11°,则∠ACO=30°+11°=41°.
    ∴∠AOC=180°-∠ACO-∠CAO=90°.
    在等腰Rt△ABC中,AB=4,则AO=OC=2.
    在Rt△AOD1中,OD1=CD1-OC=3,
    由勾股定理得:AD1=.
    故选A.
    考点: 1.旋转;2.勾股定理.
    10、C
    【解析】
    试题分析:∵分式有意义,∴x﹣3≠0,∴x≠3;故选C.
    考点:分式有意义的条件.
    11、B
    【解析】
    本题是一道关于点、线、面、体的题目,回忆点、线、面、体的知识;
    【详解】
    解:∵A、天空划过一道流星说明“点动成线”,
    ∴故本选项错误.
    ∵B、汽车雨刷在挡风玻璃上刷出的痕迹说明“线动成面”,
    ∴故本选项正确.
    ∵C、抛出一块小石子,石子在空中飞行的路线说明“点动成线”,
    ∴故本选项错误.
    ∵D、旋转一扇门,门在空中运动的痕迹说明“面动成体”,
    ∴故本选项错误.
    故选B.
    【点睛】
    本题考查了点、线、面、体,准确认识生活实际中的现象是解题的关键.点动成线、线动成面、面动成体.
    12、A
    【解析】
    将抛物线平移,使平移后所得抛物线经过原点,
    若左右平移n个单位得到,则平移后的解析式为:,将(0,0)代入后解得:n=-3或n=1,所以向左平移1个单位或向右平移3个单位后抛物线经过原点;
    若上下平移m个单位得到,则平移后的解析式为:,将(0,0)代入后解得:m=-3,所以向下平移3个单位后抛物线经过原点,
    故选A.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、3
    【解析】
    把x与y的值代入方程组求出m与n的值,即可确定出所求.
    【详解】
    解:把代入方程组得:
    相加得:m+3n=27,
    则27的立方根为3,
    故答案为3
    【点睛】
    此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程左右两边相等的未知数的值.
    14、 (x+3)(x-3)
    【解析】
    x2-9=(x+3)(x-3),
    故答案为(x+3)(x-3).
    15、①③④
    【解析】
    由M、N是BD的三等分点,得到DN=NM=BM,根据平行四边形的性质得到AB=CD,AB∥CD,推出△BEM∽△CDM,根据相似三角形的性质得到,于是得到BE=AB,故①正确;根据相似三角形的性质得到=,求得DF=BE,于是得到DF=AB=CD,求得CF=3DF,故②错误;根据已知条件得到S△BEM=S△EMN=S△CBE,求得=,于是得到S△ECF=,故③正确;根据线段垂直平分线的性质得到EB=EN,根据等腰三角形的性质得到∠ENB=∠EBN,等量代换得到∠CDN=∠DNF,求得△DFN是等腰三角形,故④正确.
    【详解】
    解:∵ƒM、N是BD的三等分点,
    ∴DN=NM=BM,
    ∵四边形ABCD是平行四边形,
    ∴AB=CD,AB∥CD,
    ∴△BEM∽△CDM,
    ∴,
    ∴BE=CD,
    ∴BE=AB,故①正确;
    ∵AB∥CD,
    ∴△DFN∽△BEN,
    ∴=,
    ∴DF=BE,
    ∴DF=AB=CD,
    ∴CF=3DF,故②错误;
    ∵BM=MN,CM=2EM,
    ∴△BEM=S△EMN=S△CBE,
    ∵BE=CD,CF=CD,
    ∴=,
    ∴S△EFC=S△CBE=S△MNE,
    ∴S△ECF=,故③正确;
    ∵BM=NM,EM⊥BD,
    ∴EB=EN,
    ∴∠ENB=∠EBN,
    ∵CD∥AB,
    ∴∠ABN=∠CDB,
    ∵∠DNF=∠BNE,
    ∴∠CDN=∠DNF,
    ∴△DFN是等腰三角形,故④正确;
    故答案为①③④.
    【点睛】
    考点:相似三角形的判定与性质;全等三角形的判定与性质;平行四边形的性质.
    16、1
    【解析】
    先根据三角形中位线定理得到的长,再根据直角三角形斜边上中线的性质,即可得到的长,进而得出计算结果.
    【详解】
    解:∵点E,F分别是的中点,
    ∴FE是△BCD的中位线,
    .
    又∵E是BD的中点,
    ∴Rt△ABD中,,

    故答案为1.
    【点睛】
    本题主要考查了矩形的性质以及三角形中位线定理的运用,解题时注意:在直角三角形中,斜边上的中线等于斜边的一半;三角形的中位线平行于第三边,并且等于第三边的一半.
    17、丙
    【解析】
    先比较平均数得到乙组和丙组成绩较好,然后比较方差得到丙组的状态稳定,于是可决定选丙组去参赛.
    【详解】
    因为乙组、丙组的平均数比甲组、丁组大,而丙组的方差比乙组的小,
    所以丙组的成绩比较稳定,
    所以丙组的成绩较好且状态稳定,应选的组是丙组.
    故答案为丙.
    【点睛】
    本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.
    18、
    【解析】
    利用圆锥的底面周长和母线长求得圆锥的侧面积,然后再利用圆锥的面积的计算方法求得侧面展开扇形的圆心角的度数即可
    【详解】
    ∵圆锥的底面圆的周长是,
    ∴圆锥的侧面扇形的弧长为 cm,

    解得:
    故答案为.
    【点睛】
    此题考查弧长的计算,解题关键在于求得圆锥的侧面积

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、第一次买14千克香蕉,第二次买36千克香蕉
    【解析】
    本题两个等量关系为:第一次买的千克数+第二次买的千克数=50;第一次出的钱数+第二次出的钱数=1.对张强买的香蕉的千克数,应分情况讨论:①当0<x≤20,y≤40;②当0<x≤20,y>40③当20<x<3时,则3<y<2.
    【详解】
    设张强第一次购买香蕉xkg,第二次购买香蕉ykg,由题意可得0<x<3.
    则①当0<x≤20,y≤40,则题意可得

    解得.
    ②当0<x≤20,y>40时,由题意可得

    解得.(不合题意,舍去)
    ③当20<x<3时,则3<y<2,此时张强用去的款项为
    5x+5y=5(x+y)=5×50=30<1(不合题意,舍去);
    ④当20<x≤40 y>40时,总质量将大于60kg,不符合题意,
    答:张强第一次购买香蕉14kg,第二次购买香蕉36kg.
    【点睛】
    本题主要考查学生分类讨论的思想.找到两个基本的等量关系后,应根据讨论的千克数找到相应的价格进行作答.
    20、(1);(2)-2或-1;(3)-1≤n

    相关试卷

    乐山市重点中学2021-2022学年中考数学最后冲刺浓缩精华卷含解析:

    这是一份乐山市重点中学2021-2022学年中考数学最后冲刺浓缩精华卷含解析,共26页。试卷主要包含了已知A样本的数据如下等内容,欢迎下载使用。

    2022届安徽省宿州市埇桥区中考数学考试模拟冲刺卷含解析:

    这是一份2022届安徽省宿州市埇桥区中考数学考试模拟冲刺卷含解析,共17页。试卷主要包含了考生要认真填写考场号和座位序号,下列计算正确的是,计算的结果是,如图,将一正方形纸片沿图等内容,欢迎下载使用。

    2022届安徽宿州埇桥区中考考前最后一卷数学试卷含解析:

    这是一份2022届安徽宿州埇桥区中考考前最后一卷数学试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,一次函数的图象不经过,计算36÷等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map