2021-2022学年广东省佛山市南海区里水镇中考数学仿真试卷含解析
展开
这是一份2021-2022学年广东省佛山市南海区里水镇中考数学仿真试卷含解析,共20页。试卷主要包含了答题时请按要求用笔,下列运算正确的是,若a与﹣3互为倒数,则a=等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.实数a,b在数轴上对应的点的位置如图所示,则正确的结论是( )
A.a+b<0 B.a>|﹣2| C.b>π D.
2.如图,小明将一张长为20cm,宽为15cm的长方形纸(AE>DE)剪去了一角,量得AB=3cm,CD=4cm,则剪去的直角三角形的斜边长为( )
A.5cm B.12cm C.16cm D.20cm
3.潍坊市2018年政府工作报告中显示,潍坊社会经济平稳运行,地区生产总值增长8%左右,社会消费品零售总额增长12%左右,一般公共预算收入539.1亿元,7家企业入选国家“两化”融合贯标试点,潍柴集团收入突破2000亿元,荣获中国商标金奖.其中,数字2000亿元用科学记数法表示为( )元.(精确到百亿位)
A.2×1011 B.2×1012 C.2.0×1011 D.2.0×1010
4.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且BD=BA,则tan∠DAC的值为( )
A. B.2 C. D.3
5.2017年新设了雄安新区,周边经济受到刺激综合实力大幅跃升,其中某地区生产总值预计可增长到305.5亿元其中305.5亿用科学记数法表示为( )
A.305.5×104 B.3.055×102 C.3.055×1010 D.3.055×1011
6.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是( )
A. B. C. D.
7.关于的一元二次方程有两个不相等的实数根,则实数的取值范围是
A. B. C. D.
8.如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )
A.14° B.15° C.16° D.17°
9.下列运算正确的是( )
A.5a+2b=5(a+b) B.a+a2=a3
C.2a3•3a2=6a5 D.(a3)2=a5
10.若a与﹣3互为倒数,则a=( )
A.3 B.﹣3 C. D.-
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,正比例函数y1=k1x和反比例函数y2=的图象交于A(﹣1,2),B(1,﹣2)两点,若y1>y2,则x的取值范围是_____.
12.如图,四边形ABCD为矩形,H、F分别为AD、BC边的中点,四边形EFGH为矩形,E、G分别在AB、CD边上,则图中四个直角三角形面积之和与矩形EFGH的面积之比为_____.
13.将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=__.
14.若x=-1, 则x2+2x+1=__________.
15.如图,在四边形中,,,,,,点从点出发以的速度向点运动,点从点出发以的速度向点运动,、两点同时出发,其中一点到达终点时另一点也停止运动.若,当__时,是等腰三角形.
16.方程的解是 .
三、解答题(共8题,共72分)
17.(8分)某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.求每个月生产成本的下降率;请你预测4月份该公司的生产成本.
18.(8分)解下列不等式组:
19.(8分)计算:|﹣|﹣﹣(2﹣π)0+2cos45°. 解方程: =1﹣
20.(8分)某车间的甲、乙两名工人分别同时生产只同一型号的零件,他们生产的零件(只)与生产时间(分)的函数关系的图象如图所示.根据图象提供的信息解答下列问题:
(1)甲每分钟生产零件_______只;乙在提高生产速度之前已生产了零件_______只;
(2)若乙提高速度后,乙的生产速度是甲的倍,请分别求出甲、乙两人生产全过程中,生产的零件(只)与生产时间(分)的函数关系式;
(3)当两人生产零件的只数相等时,求生产的时间;并求出此时甲工人还有多少只零件没有生产.
21.(8分)春节期间,收发微信红包已经成为各类人群进行交流联系、增强感情的一部分,小王在年春节共收到红包元,年春节共收到红包元,求小王在这两年春节收到红包的年平均增长率.
22.(10分)如图,已知点D、E为△ABC的边BC上两点.AD=AE,BD=CE,为了判断∠B与∠C的大小关系,请你填空完成下面的推理过程,并在空白括号内注明推理的依据.
解:过点A作AH⊥BC,垂足为H.
∵在△ADE中,AD=AE(已知)
AH⊥BC(所作)
∴DH=EH(等腰三角形底边上的高也是底边上的中线)
又∵BD=CE(已知)
∴BD+DH=CE+EH(等式的性质)
即:BH=
又∵ (所作)
∴AH为线段 的垂直平分线
∴AB=AC(线段垂直平分线上的点到线段两个端点的距离相等)
∴ (等边对等角)
23.(12分)如图,将平行四边形ABCD纸片沿EF折叠,使点C与点A重合,点D落在点G处.
(1)连接CF,求证:四边形AECF是菱形;
(2)若E为BC中点,BC=26,tan∠B=,求EF的长.
24.如图,菱形ABCD的边长为20cm,∠ABC=120°,对角线AC,BD相交于点O,动点P从点A出发,以4cm/s的速度,沿A→B的路线向点B运动;过点P作PQ∥BD,与AC相交于点Q,设运动时间为t秒,0<t<1.
(1)设四边形PQCB的面积为S,求S与t的关系式;
(2)若点Q关于O的对称点为M,过点P且垂直于AB的直线l交菱形ABCD的边AD(或CD)于点N,当t为何值时,点P、M、N在一直线上?
(3)直线PN与AC相交于H点,连接PM,NM,是否存在某一时刻t,使得直线PN平分四边形APMN的面积?若存在,求出t的值;若不存在,请说明理由.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
根据数轴上点的位置,可得a,b,根据有理数的运算,可得答案.
【详解】
a=﹣2,2<b<1.
A.a+b<0,故A不符合题意;
B.a<|﹣2|,故B不符合题意;
C.b<1<π,故C不符合题意;
D.<0,故D符合题意;
故选D.
【点睛】
本题考查了实数与数轴,利用有理数的运算是解题关键.
2、D
【解析】
解答此题要延长AB、DC相交于F,则BFC构成直角三角形,再用勾股定理进行计算.
【详解】
延长AB、DC相交于F,则BFC构成直角三角形,
运用勾股定理得:
BC2=(15-3)2+(1-4)2=122+162=400,
所以BC=1.
则剪去的直角三角形的斜边长为1cm.
故选D.
【点睛】
本题主要考查了勾股定理的应用,解答此题要延长AB、DC相交于F,构造直角三角形,用勾股定理进行计算.
3、C
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
2000亿元=2.0×1.
故选:C.
【点睛】
考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
4、A
【解析】
设AC=a,由特殊角的三角函数值分别表示出BC、AB的长度,进而得出BD、CD的长度,由公式求出tan∠DAC的值即可.
【详解】
设AC=a,则BC==a,AB==2a,
∴BD=BA=2a,
∴CD=(2+)a,
∴tan∠DAC=2+.
故选A.
【点睛】
本题主要考查特殊角的三角函数值.
5、C
【解析】
解:305.5亿=3.055×1.故选C.
6、B
【解析】
根据简单概率的计算公式即可得解.
【详解】
一共四个小球,随机摸出一球,不放回;再随机摸出一球一共有12中可能,其中能组成孔孟的有2种,所以两次摸出的球上的汉字能组成“孔孟”的概率是.
故选B.
考点:简单概率计算.
7、A
【解析】
根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可.
【详解】
∵关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,
∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,
∴m<,
故选A.
【点睛】
本题考查了根的判别式,解题的关键在于熟练掌握一元二次方程根的情况与判别式△的关系,即:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.
8、C
【解析】
依据∠ABC=60°,∠2=44°,即可得到∠EBC=16°,再根据BE∥CD,即可得出∠1=∠EBC=16°.
【详解】
如图,
∵∠ABC=60°,∠2=44°,
∴∠EBC=16°,
∵BE∥CD,
∴∠1=∠EBC=16°,
故选:C.
【点睛】
本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.
9、C
【解析】
直接利用合并同类项法则以及单项式乘以单项式、幂的乘方运算法则分别化简得出答案.
【详解】
A、5a+2b,无法计算,故此选项错误;
B、a+a2,无法计算,故此选项错误;
C、2a3•3a2=6a5,故此选项正确;
D、(a3)2=a6,故此选项错误.
故选C.
【点睛】
此题主要考查了合并同类项以及单项式乘以单项式、幂的乘方运算,正确掌握运算法则是解题关键.
10、D
【解析】
试题分析:根据乘积是1的两个数互为倒数,可得3a=1,
∴a=,
故选C.
考点:倒数.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、x<﹣2或0<x<2
【解析】
仔细观察图像,图像在上面的函数值大,图像在下面的函数值小,当y2>y2,即正比例函数的图像在上,反比例函数的图像在下时,根据图像写出x的取值范围即可.
【详解】
解:如图,
结合图象可得:
①当x<﹣2时,y2>y2;②当﹣2<x<0时,y2<y2;③当0<x<2时,y2>y2;④当x>2时,y2<y2.
综上所述:若y2>y2,则x的取值范围是x<﹣2或0<x<2.
故答案为x<﹣2或0<x<2.
【点睛】
本题考查了图像法解不等式,解题的关键是仔细观察图像,全面写出符合条件的x 的取值范围.
12、1:1
【解析】
根据矩形性质得出AD=BC,AD∥BC,∠D=90°,求出四边形HFCD是矩形,得出△HFG的面积是CD×DH=S矩形HFCD,推出S△HFG=S△DHG+S△CFG,同理S△HEF=S△BEF+S△AEH,即可得出答案.
【详解】
连接HF,
∵四边形ABCD为矩形,
∴AD=BC,AD∥BC,∠D=90°
∵H、F分别为AD、BC边的中点,
∴DH=CF,DH∥CF,
∵∠D=90°,
∴四边形HFCD是矩形,
∴△HFG的面积是CD×DH=S矩形HFCD,
即S△HFG=S△DHG+S△CFG,
同理S△HEF=S△BEF+S△AEH,
∴图中四个直角三角形面积之和与矩形EFGH的面积之比是1:1,
故答案为1:1.
【点睛】
本题考查了矩形的性质和判定,三角形的面积,主要考查学生的推理能力.
13、40°
【解析】
直接利用三角形内角和定理得出∠6+∠7的度数,进而得出答案.
【详解】
如图所示:
∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,
∵∠1+∠2+∠3+∠4=220°,
∴∠1+∠2+∠6+∠3+∠4+∠7=360°,
∴∠6+∠7=140°,
∴∠5=180°-(∠6+∠7)=40°.
故答案为40°.
【点睛】
主要考查了三角形内角和定理,正确应用三角形内角和定理是解题关键.
14、2
【解析】
先利用完全平方公式对所求式子进行变形,然后代入x的值进行计算即可.
【详解】
∵x=-1,
∴x2+2x+1=(x+1)2=(-1+1)2=2,
故答案为:2.
【点睛】
本题考查了代数式求值,涉及了因式分解,二次根式的性质等,熟练掌握相关知识是解题的关键.
15、或.
【解析】
根据题意,用时间t表示出DQ和PC,然后根据等腰三角形腰的情况分类讨论,①当时,画出对应的图形,可知点在的垂直平分线上,QE=,AE=BP,列出方程即可求出t;②当时,过点作于,根据勾股定理求出PQ,然后列出方程即可求出t.
【详解】
解:由运动知,,,
,,
,,
是等腰三角形,且,
①当时,过点P作PE⊥AD于点E
点在的垂直平分线上, QE=,AE=BP
,
,
,
②当时,如图,过点作于,
,
,,
,
四边形是矩形,
,,
,
在中,,
,
,
点在边上,不和重合,
,
,
此种情况符合题意,
即或时,是等腰三角形.
故答案为:或.
【点睛】
此题考查的是等腰三角形的定义和动点问题,掌握等腰三角形的定义和分类讨论的数学思想是解决此题的关键.
16、x=1.
【解析】
根据解分式方程的步骤解答即可.
【详解】
去分母得:2x=3x﹣1,
解得:x=1,
经检验x=1是分式方程的解,
故答案为x=1.
【点睛】
本题主要考查了解分式方程的步骤,牢牢掌握其步骤就解答此类问题的关键.
三、解答题(共8题,共72分)
17、(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.
【解析】
(1)设每个月生产成本的下降率为x,根据2月份、3月份的生产成本,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;
(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.
【详解】
(1)设每个月生产成本的下降率为x,
根据题意得:400(1﹣x)2=361,
解得:x1=0.05=5%,x2=1.95(不合题意,舍去).
答:每个月生产成本的下降率为5%;
(2)361×(1﹣5%)=342.95(万元),
答:预测4月份该公司的生产成本为342.95万元.
【点睛】
本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.
18、﹣2≤x<.
【解析】
先分别求出两个不等式的解集,再求其公共解.
【详解】
,
解不等式①得,x<,
解不等式②得,x≥﹣2,
则不等式组的解集是﹣2≤x<.
【点睛】
本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).
19、(1)﹣1;(2)x=﹣1是原方程的根.
【解析】
(1)直接化简二次根式进而利用零指数幂的性质以及特殊角三角函数值进而得出答案;
(2)直接去分母再解方程得出答案.
【详解】
(1)原式=﹣2﹣1+2×
=﹣﹣1+
=﹣1;
(2)去分母得:3x=x﹣3+1,
解得:x=﹣1,
检验:当x=﹣1时,x﹣3≠0,
故x=﹣1是原方程的根.
【点睛】
此题主要考查了实数运算和解分式方程,正确掌握解分式方程的方法是解题关键.
20、(1)25,150;(2)y甲=25x(0≤x≤20),;(3)x=14,150
【解析】
解:(1)甲每分钟生产=25只;
提高生产速度之前乙的生产速度==15只/分,
故乙在提高生产速度之前已生产了零件:15×10=150只;
(2)结合后图象可得:
甲:y甲=25x(0≤x≤20);
乙提速后的速度为50只/分,故乙生产完500只零件还需7分钟,
乙:y乙=15x(0≤x≤10),
当10<x≤17时,设y乙=kx+b,把(10,150)、(17,500),代入可得:
10k+b=150,17k+b=500,
解得:k=50,b=−350,
故y乙=50x−350(10≤x≤17).
综上可得:y甲=25x(0≤x≤20);
;
(3)令y甲=y乙,得25x=50x−350,
解得:x=14,
此时y甲=y乙=350只,故甲工人还有150只未生产.
21、小王在这两年春节收到的年平均增长率是
【解析】
增长后的量=增长前的量×(1+增长率),2018年收到微信红包金额400(1+x)元,在2018年的基础上再增长x,就是2019年收到微信红包金额400(1+x)(1+x)元,由此可列出方程400(1+x)2=484,求解即可.
【详解】
解:设小王在这两年春节收到的红包的年平均增长率是.
依题意得:
解得(舍去).
答:小王在这两年春节收到的年平均增长率是
【点睛】
本题考查了一元二次方程的应用.对于增长率问题,增长前的量×(1+年平均增长率)年数=增长后的量.
22、见解析
【解析】
根据等腰三角形的性质与判定及线段垂直平分线的性质解答即可.
【详解】
过点A作AH⊥BC,垂足为H.
∵在△ADE中,AD=AE(已知),
AH⊥BC(所作),
∴DH=EH(等腰三角形底边上的高也是底边上的中线).
又∵BD=CE(已知),
∴BD+DH=CE+EH(等式的性质),
即:BH=CH.
∵AH⊥BC(所作),
∴AH为线段BC的垂直平分线.
∴AB=AC(线段垂直平分线上的点到线段两个端点的距离相等).
∴∠B=∠C(等边对等角).
【点睛】
本题考查等腰三角形的性质及线段垂直平分线的性质,等腰三角形的底边中线、底边上的高、顶角的角平分线三线合一;线段垂直平分线上的点到线段两端的距离相等;
23、 (1)证明见解析;(2)EF=1.
【解析】
(1)如图1,利用折叠性质得EA=EC,∠1=∠2,再证明∠1=∠3得到AE=AF,则可判断四边形AECF为平行四边形,从而得到四边形AECF为菱形;
(2)作EH⊥AB于H,如图,利用四边形AECF为菱形得到AE=AF=CE=13,则判断四边形ABEF为平行四边形得到EF=AB,根据等腰三角形的性质得AH=BH,再在Rt△BEH中利用tanB==可计算出BH=5,从而得到EF=AB=2BH=1.
【详解】
(1)证明:如图1,
∵平行四边形ABCD纸片沿EF折叠,使点C与点A重合,点D落在点G处,
∴EA=EC,∠1=∠2,
∵四边形ABCD为平行四边形,
∴AD∥BC,
∴∠2=∠3,
∴∠1=∠3,
∴AE=AF,
∴AF=CE,
而AF∥CE,
∴四边形AECF为平行四边形,
∵EA=EC,
∴四边形AECF为菱形;
(2)解:作EH⊥AB于H,如图,
∵E为BC中点,BC=26,
∴BE=EC=13,
∵四边形AECF为菱形,
∴AE=AF=CE=13,
∴AF=BE,
∴四边形ABEF为平行四边形,
∴EF=AB,
∵EA=EB,EH⊥AB,
∴AH=BH,
在Rt△BEH中,tanB==,
设EH=12x,BH=5x,则BE=13x,
∴13x=13,解得x=1,
∴BH=5,
∴AB=2BH=1,
∴EF=1.
【点睛】
本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了平行四边形的性质、菱形的判定与性质.
24、 (1) S=﹣2(0<t<1); (2) ;(3)见解析.
【解析】
(1)如图1,根据S=S△ABC-S△APQ,代入可得S与t的关系式;
(2)设PM=x,则AM=2x,可得AP=x=4t,计算x的值,根据直角三角形30度角的性质可得AM=2PM=,根据AM=AO+OM,列方程可得t的值;
(3)存在,通过画图可知:N在CD上时,直线PN平分四边形APMN的面积,根据面积相等可得MG=AP,由AM=AO+OM,列式可得t的值.
【详解】
解:(1)如图1,∵四边形ABCD是菱形,
∴∠ABD=∠DBC=∠ABC=60°,AC⊥BD,
∴∠OAB=30°,
∵AB=20,
∴OB=10,AO=10,
由题意得:AP=4t,
∴PQ=2t,AQ=2t,
∴S=S△ABC﹣S△APQ,
=,
= ,
=﹣2t2+100(0<t<1);
(2)如图2,在Rt△APM中,AP=4t,
∵点Q关于O的对称点为M,
∴OM=OQ,
设PM=x,则AM=2x,
∴AP=x=4t,
∴x=,
∴AM=2PM=,
∵AM=AO+OM,
∴=10+10﹣2t,
t=;
答:当t为秒时,点P、M、N在一直线上;
(3)存在,
如图3,∵直线PN平分四边形APMN的面积,
∴S△APN=S△PMN,
过M作MG⊥PN于G,
∴ ,
∴MG=AP,
易得△APH≌△MGH,
∴AH=HM=t,
∵AM=AO+OM,
同理可知:OM=OQ=10﹣2t,
t=10=10﹣2t,
t=.
答:当t为秒时,使得直线PN平分四边形APMN的面积.
【点睛】
考查了全等三角形的判定与性质,对称的性质,三角形和四边形的面积,二次根式的化简等知识点,计算量大,解答本题的关键是熟练掌握动点运动时所构成的三角形各边的关系.
相关试卷
这是一份广东省佛山市南海区里水镇2023-2024学年数学九上期末质量检测模拟试题含答案,共9页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
这是一份2023-2024学年广东省佛山市南海区里水镇数学九上期末学业水平测试试题含答案,共7页。试卷主要包含了下列函数是二次函数的是,已知点A等内容,欢迎下载使用。
这是一份广东省佛山市南海区里水镇2023-2024学年八上数学期末监测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,下列运算结果正确的是等内容,欢迎下载使用。