|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021-2022学年福建省福州市第二中学中考数学考试模拟冲刺卷含解析
    立即下载
    加入资料篮
    2021-2022学年福建省福州市第二中学中考数学考试模拟冲刺卷含解析01
    2021-2022学年福建省福州市第二中学中考数学考试模拟冲刺卷含解析02
    2021-2022学年福建省福州市第二中学中考数学考试模拟冲刺卷含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年福建省福州市第二中学中考数学考试模拟冲刺卷含解析

    展开
    这是一份2021-2022学年福建省福州市第二中学中考数学考试模拟冲刺卷含解析,共21页。试卷主要包含了的算术平方根为,下面运算正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,它们离甲地的路程y(km)与客车行驶时间x(h)间的函数关系如图,下列信息:
    (1)出租车的速度为100千米/时;
    (2)客车的速度为60千米/时;
    (3)两车相遇时,客车行驶了3.75小时;
    (4)相遇时,出租车离甲地的路程为225千米.
    其中正确的个数有(  )

    A.1个 B.2个 C.3个 D.4个
    2.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,若AD=3,BE=1,则DE=( )

    A.1 B.2 C.3 D.4
    3.已知正比例函数的图象经过点,则此正比例函数的关系式为( ).
    A. B. C. D.
    4.在一个直角三角形中,有一个锐角等于45°,则另一个锐角的度数是(  )
    A.75° B.60° C.45° D.30°
    5.某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是(  )

    A.参加本次植树活动共有30人 B.每人植树量的众数是4棵
    C.每人植树量的中位数是5棵 D.每人植树量的平均数是5棵
    6.的算术平方根为( )
    A. B. C. D.
    7.如图所示,在矩形ABCD中,AB=6,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则DE的长是(  )

    A.5 B. C. D.
    8.桌面上有A、B两球,若要将B球射向桌面任意一边的黑点,则B球一次反弹后击中A球的概率是(  )

    A. B. C. D.
    9.某工程队开挖一条480米的隧道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖米,那么求时所列方程正确的是( )
    A. B.
    C. D.
    10.下面运算正确的是(  )
    A. B.(2a)2=2a2 C.x2+x2=x4 D.|a|=|﹣a|
    二、填空题(共7小题,每小题3分,满分21分)
    11.因式分解:3x3﹣12x=_____.
    12.请从以下两个小题中任选一个作答,若多选,则按第一题计分.
    A.正多边形的一个外角是40°,则这个正多边形的边数是____________ .
    B.运用科学计算器比较大小: ________ sin37.5° .
    13.因式分解:   .
    14.如图,已知,D、E分别是边BA、CA延长线上的点,且如果,,那么AE的长为______.

    15.如图△ABC中,AB=AC=8,∠BAC=30°,现将△ABC绕点A逆时针旋转30°得到△ACD,延长AD、BC交于点E,则DE的长是_____.

    16.函数的自变量的取值范围是.
    17.二次函数y=x2-2x+1的对称轴方程是x=_______.
    三、解答题(共7小题,满分69分)
    18.(10分)如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80°(∠FGK=80°),身体前倾成125°(∠EFG=125°),脚与洗漱台距离GC=15cm(点D,C,G,K在同一直线上).(cos80°≈0.17,sin80°≈0.98,≈1.414)

    (1)此时小强头部E点与地面DK相距多少?
    (2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?
    19.(5分)如图,在平面直角坐标系中有三点(1,2),(3,1),(-2,-1),其中有两点同时在反比例函数的图象上,将这两点分别记为A,B,另一点记为C,
    (1)求出的值;
    (2)求直线AB对应的一次函数的表达式;
    (3)设点C关于直线AB的对称点为D,P是轴上的一个动点,直接写出PC+PD的最小值(不必说明理由).

    20.(8分)(定义)如图1,A,B为直线l同侧的两点,过点A作直线1的对称点A′,连接A′B交直线l于点P,连接AP,则称点P为点A,B关于直线l的“等角点”.
    (运用)如图2,在平面直坐标系xOy中,已知A(2,),B(﹣2,﹣)两点.
    (1)C(4,),D(4,),E(4,)三点中,点   是点A,B关于直线x=4的等角点;
    (2)若直线l垂直于x轴,点P(m,n)是点A,B关于直线l的等角点,其中m>2,∠APB=α,求证:tan=;
    (3)若点P是点A,B关于直线y=ax+b(a≠0)的等角点,且点P位于直线AB的右下方,当∠APB=60°时,求b的取值范围(直接写出结果).

    21.(10分)顶点为D的抛物线y=﹣x2+bx+c交x轴于A、B(3,0),交y轴于点C,直线y=﹣x+m经过点C,交x轴于E(4,0).
    求出抛物线的解析式;如图1,点M为线段BD上不与B、D重合的一个动点,过点M作x轴的垂线,垂足为N,设点M的横坐标为x,四边形OCMN的面积为S,求S与x之间的函数关系式,并求S的最大值;点P为x轴的正半轴上一个动点,过P作x轴的垂线,交直线y=﹣x+m于G,交抛物线于H,连接CH,将△CGH沿CH翻折,若点G的对应点F恰好落在y轴上时,请直接写出点P的坐标.
    22.(10分)元旦放假期间,小明和小华准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点被选中的可能性相同.求小明选择去白鹿原游玩的概率;用树状图或列表的方法求小明和小华都选择去秦岭国家植物园游玩的概率.
    23.(12分)计算:; 解方程:
    24.(14分)计算:(-1)-1-++|1-3|



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    根据题意和函数图象中的数据可以判断各个小题是否正确,从而可以解答本题.
    【详解】
    由图象可得,
    出租车的速度为:600÷6=100千米/时,故(1)正确,
    客车的速度为:600÷10=60千米/时,故(2)正确,
    两车相遇时,客车行驶时间为:600÷(100+60)=3.75(小时),故(3)正确,
    相遇时,出租车离甲地的路程为:60×3.75=225千米,故(4)正确,
    故选D.
    【点睛】
    本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.
    2、B
    【解析】
    根据余角的性质,可得∠DCA与∠CBE的关系,根据AAS可得△ACD与△CBE的关系,根据全等三角形的性质,可得AD与CE的关系,根据线段的和差,可得答案.
    【详解】
    ∴∠ADC=∠BEC=90°.
    ∵∠BCE+∠CBE=90°,∠BCE+∠CAD=90°,
    ∠DCA=∠CBE,
    在△ACD和△CBE中,,
    ∴△ACD≌△CBE(AAS),
    ∴CE=AD=3,CD=BE=1,
    DE=CE−CD=3−1=2,
    故答案选:B.
    【点睛】
    本题考查了全等三角形的判定与性质,解题的关键是熟练的掌握全等三角形的判定与性质.
    3、A
    【解析】
    根据待定系数法即可求得.
    【详解】
    解:∵正比例函数y=kx的图象经过点(1,﹣3),
    ∴﹣3=k,即k=﹣3,
    ∴该正比例函数的解析式为:y=﹣3x.
    故选A.
    【点睛】
    此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.
    4、C
    【解析】
    根据直角三角形两锐角互余即可解决问题.
    【详解】
    解:∵直角三角形两锐角互余,
    ∴另一个锐角的度数=90°﹣45°=45°,
    故选C.
    【点睛】
    本题考查直角三角形的性质,记住直角三角形两锐角互余是解题的关键.
    5、D
    【解析】
    试题解析:A、∵4+10+8+6+2=30(人),
    ∴参加本次植树活动共有30人,结论A正确;
    B、∵10>8>6>4>2,
    ∴每人植树量的众数是4棵,结论B正确;
    C、∵共有30个数,第15、16个数为5,
    ∴每人植树量的中位数是5棵,结论C正确;
    D、∵(3×4+4×10+5×8+6×6+7×2)÷30≈4.73(棵),
    ∴每人植树量的平均数约是4.73棵,结论D不正确.
    故选D.
    考点:1.条形统计图;2.加权平均数;3.中位数;4.众数.
    6、B
    【解析】
    分析:先求得的值,再继续求所求数的算术平方根即可.
    详解:∵=2,
    而2的算术平方根是,
    ∴的算术平方根是,
    故选B.
    点睛:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A的错误.
    7、C
    【解析】
    先利用勾股定理求出AC的长,然后证明△AEO∽△ACD,根据相似三角形对应边成比例列式求解即可.
    【详解】
    ∵AB=6,BC=8,
    ∴AC=10(勾股定理);
    ∴AO=AC=5,
    ∵EO⊥AC,
    ∴∠AOE=∠ADC=90°,
    ∵∠EAO=∠CAD,
    ∴△AEO∽△ACD,
    ∴,
    即 ,
    解得,AE=,
    ∴DE=8﹣=,
    故选:C.
    【点睛】
    本题考查了矩形的性质,勾股定理,相似三角形对应边成比例的性质,根据相似三角形对应边成比例列出比例式是解题的关键.
    8、B
    【解析】
    试题解析:由图可知可以瞄准的点有2个.

    ∴B球一次反弹后击中A球的概率是.
    故选B.
    9、C
    【解析】
    本题的关键描述语是:“提前1天完成任务”;等量关系为:原计划用时−实际用时=1.
    【详解】
    解:原计划用时为:,实际用时为:.
    所列方程为:,
    故选C.
    【点睛】
    本题考查列分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.
    10、D
    【解析】
    分别利用整数指数幂的性质以及合并同类项以及积的乘方运算、 绝对值的性质分别化简求出答案.
    【详解】
    解:A,,故此选项错误;
    B,,故此选项错误;
    C,,故此选项错误;
    D,,故此选项正确.
    所以D选项是正确的.
    【点睛】
    灵活运用整数指数幂的性质以及合并同类项以及积的乘方运算、 绝对值的性质可以求出答案.

    二、填空题(共7小题,每小题3分,满分21分)
    11、3x(x+2)(x﹣2)
    【解析】
    先提公因式3x,然后利用平方差公式进行分解即可.
    【详解】
    3x3﹣12x
    =3x(x2﹣4)
    =3x(x+2)(x﹣2),
    故答案为3x(x+2)(x﹣2).
    【点睛】
    本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.
    12、9, >
    【解析】
    (1)根据任意多边形外角和等于360可以得到正多边形的边数(2)用科学计算器计算即可比较大小.
    【详解】
    (1)正多边形的一个外角是40°,任意多边形外角和等于360

    (2)利用科学计算器计算可知, sin37.5° .
    故答案为(1). 9, (2). >
    【点睛】
    此题重点考察学生对正多边形外交和的理解,掌握正多边形外角和,会用科学计算器是解题的关键.
    13、.
    【解析】
    要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,
    先提取公因式后继续应用平方差公式分解即可:.
    14、
    【解析】
    由DE∥BC不难证明△ABC△ADE,再由,将题中数值代入并根据等量关系计算AE的长.
    【详解】
    解:由DE∥BC不难证明△ABC△ADE,
    ∵,CE=4,
    ∴,
    解得:AE=
    故答案为.
    【点睛】
    本题考查了相似三角形的判定和性质,熟记三角形的判定和性质是解题关键.
    15、
    【解析】
    过点作于,根据三角形的性质及三角形内角和定理可计算
    再由旋转可得,,根据三角形外角和性质计算,根据含角的直角三角形的三边关系得和的长度,进而得到的长度,然后利用得到与的长度,于是可得.
    【详解】
    如图,过点作于,
    ∵,
    ∴.
    ∵将绕点逆时针旋转,使点落在点处,此时点落在点处,



    在中,∵

    ∴,
    在中,∵,
    ∴,
    ∴.
    故答案为.
    【点睛】
    本题考查三角形性质的综合应用,要熟练掌握等腰三角形的性质,含角的直角三角形的三边关系,旋转图形的性质.
    16、x≠1
    【解析】
    该题考查分式方程的有关概念
    根据分式的分母不为0可得
    X-1≠0,即x≠1
    那么函数y=的自变量的取值范围是x≠1
    17、1
    【解析】
    利用公式法可求二次函数y=x2-2x+1的对称轴.也可用配方法.
    【详解】
    ∵-=-=1,
    ∴x=1.
    故答案为:1
    【点睛】
    本题考查二次函数基本性质中的对称轴公式;也可用配方法解决.

    三、解答题(共7小题,满分69分)
    18、 (1) 小强的头部点E与地面DK的距离约为144.5 cm.(2) 他应向前9.5 cm.
    【解析】
    试题分析:(1)过点F作FN⊥DK于N,过点E作EM⊥FN于M.求出MF、FN的值即可解决问题;
    (2)求出OH、PH的值即可判断;
    试题解析:解:(1)过点F作FN⊥DK于N,过点E作EM⊥FN于M.
    ∵EF+FG=166,FG=100,∴EF=66,∵∠FGK=80°,∴FN=100sin80°≈98,∵∠EFG=125°,∴∠EFM=180°﹣125°﹣10°=45°,∴FM=66cos45°=≈46.53,∴MN=FN+FM≈144.5,∴此时小强头部E点与地面DK相距约为144.5cm.
    (2)过点E作EP⊥AB于点P,延长OB交MN于H.∵AB=48,O为AB中点,∴AO=BO=24,∵EM=66sin45°≈46.53,∴PH≈46.53,∵GN=100cos80°≈17,CG=15,∴OH=24+15+17=56,OP=OH﹣PH=56﹣46.53=9.47≈9.5,∴他应向前9.5cm.

    19、(2)2;(2)y=x+2;(3).
    【解析】
    (2)确定A、B、C的坐标即可解决问题;
    (2)理由待定系数法即可解决问题;
    (3)作D关于x轴的对称点D′(0,-4),连接CD′交x轴于P,此时PC+PD的值最小,最小值=CD′的长.
    【详解】
    解:(2)∵反比例函数y=的图象上的点横坐标与纵坐标的积相同,
    ∴A(2,2),B(-2,-2),C(3,2)
    ∴k=2.
    (2)设直线AB的解析式为y=mx+n,则有,
    解得,
    ∴直线AB的解析式为y=x+2.
    (3)∵C、D关于直线AB对称,
    ∴D(0,4)
    作D关于x轴的对称点D′(0,-4),连接CD′交x轴于P,

    此时PC+PD的值最小,最小值=CD′=.
    【点睛】
    本题考查反比例函数图象上的点的特征,一次函数的性质、反比例函数的性质、轴对称最短问题等知识,解题的关键是熟练掌握待定系数法确定函数解析式,学会利用轴对称解决最短问题.
    20、(1)C(2)(3)b<﹣且b≠﹣2或b>
    【解析】
    (1)先求出B关于直线x=4的对称点B′的坐标,根据A、B′的坐标可得直线AB′的解析式,把x=4代入求出P点的纵坐标即可得答案;(2)如图:过点A作直线l的对称点A′,连A′B′,交直线l于点P,作BH⊥l于点H,根据对称性可知∠APG=A′PG,由∠AGP=∠BHP=90°可证明△AGP∽△BHP,根据相似三角形对应边成比例可得m=
    根据外角性质可知∠A=∠A′=,在Rt△AGP中,根据正切定义即可得结论;(3)当点P位于直线AB的右下方,∠APB=60°时,点P在以AB为弦,所对圆周为60°,且圆心在AB下方,若直线y=ax+b(a≠0)与圆相交,设圆与直线y=ax+b(a≠0)的另一个交点为Q
    根据对称性质可证明△ABQ是等边三角形,即点Q为定点,若直线y=ax+b(a≠0)与圆相切,易得P、Q重合,所以直线y=ax+b(a≠0)过定点Q,连OQ,过点A、Q分别作AM⊥y轴,QN⊥y轴,垂足分别为M、N,可证明△AMO∽△ONQ,根据相似三角形对应边成比例可得ON、NQ的长,即可得Q点坐标,根据A、B、Q的坐标可求出直线AQ、BQ的解析式,根据P与A、B重合时b的值求出b的取值范围即可.
    【详解】
    (1)点B关于直线x=4的对称点为B′(10,﹣),
    ∴直线AB′解析式为:y=﹣,
    当x=4时,y=,
    故答案为:C
    (2)如图,过点A作直线l的对称点A′,连A′B′,交直线l于点P
    作BH⊥l于点H
    ∵点A和A′关于直线l对称
    ∴∠APG=∠A′PG
    ∵∠BPH=∠A′PG
    ∴∠APG=∠BPH
    ∵∠AGP=∠BHP=90°
    ∴△AGP∽△BHP
    ∴,即,
    ∴mn=2,即m=,
    ∵∠APB=α,AP=AP′,
    ∴∠A=∠A′=,
    在Rt△AGP中,tan

    (3)如图,当点P位于直线AB的右下方,∠APB=60°时,
    点P在以AB为弦,所对圆周为60°,且圆心在AB下方
    若直线y=ax+b(a≠0)与圆相交,设圆与直线y=ax+b(a≠0)的另一个交点为Q
    由对称性可知:∠APQ=∠A′PQ,
    又∠APB=60°
    ∴∠APQ=∠A′PQ=60°
    ∴∠ABQ=∠APQ=60°,∠AQB=∠APB=60°
    ∴∠BAQ=60°=∠AQB=∠ABQ
    ∴△ABQ是等边三角形
    ∵线段AB为定线段
    ∴点Q为定点
    若直线y=ax+b(a≠0)与圆相切,易得P、Q重合
    ∴直线y=ax+b(a≠0)过定点Q
    连OQ,过点A、Q分别作AM⊥y轴,QN⊥y轴,垂足分别为M、N
    ∵A(2,),B(﹣2,﹣)
    ∴OA=OB=
    ∵△ABQ是等边三角形
    ∴∠AOQ=∠BOQ=90°,OQ=,
    ∴∠AOM+∠NOD=90°
    又∵∠AOM+∠MAO=90°,∠NOQ=∠MAO
    ∵∠AMO=∠ONQ=90°
    ∴△AMO∽△ONQ
    ∴,
    ∴,
    ∴ON=2,NQ=3,∴Q点坐标为(3,﹣2)
    设直线BQ解析式为y=kx+b
    将B、Q坐标代入得

    解得

    ∴直线BQ的解析式为:y=﹣,
    设直线AQ的解析式为:y=mx+n,
    将A、Q两点代入,
    解得 ,
    ∴直线AQ的解析式为:y=﹣3,
    若点P与B点重合,则直线PQ与直线BQ重合,此时,b=﹣,
    若点P与点A重合,则直线PQ与直线AQ重合,此时,b=,
    又∵y=ax+b(a≠0),且点P位于AB右下方,
    ∴b<﹣ 且b≠﹣2或b>.
    【点睛】
    本题考查对称性质、相似三角形的判定与性质、根据待定系数法求一次函数解析式及锐角三角函数正切的定义,熟练掌握相关知识是解题关键.
    21、 (1)y=﹣x2+2x+3;(2)S=﹣(x﹣)2+;当x=时,S有最大值,最大值为;(3)存在,点P的坐标为(4,0)或(,0).
    【解析】
    (1)将点E代入直线解析式中,可求出点C的坐标,将点C、B代入抛物线解析式中,可求出抛物线解析式.
    (2)将抛物线解析式配成顶点式,可求出点D的坐标,设直线BD的解析式,代入点B、D,可求出直线BD的解析式,则MN可表示,则S可表示.
    (3)设点P的坐标,则点G的坐标可表示,点H的坐标可表示,HG长度可表示,利用翻折推出CG=HG,列等式求解即可.
    【详解】
    (1)将点E代入直线解析式中,
    0=﹣×4+m,
    解得m=3,
    ∴解析式为y=﹣x+3,
    ∴C(0,3),
    ∵B(3,0),
    则有,
    解得,
    ∴抛物线的解析式为:y=﹣x2+2x+3;
    (2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
    ∴D(1,4),
    设直线BD的解析式为y=kx+b,代入点B、D,

    解得,
    ∴直线BD的解析式为y=﹣2x+6,
    则点M的坐标为(x,﹣2x+6),
    ∴S=(3+6﹣2x)•x•=﹣(x﹣)2+,
    ∴当x=时,S有最大值,最大值为.
    (3)存在,
    如图所示,

    设点P的坐标为(t,0),
    则点G(t,﹣t+3),H(t,﹣t2+2t+3),
    ∴HG=|﹣t2+2t+3﹣(﹣t+3)|=|t2﹣t|
    CG==t,
    ∵△CGH沿GH翻折,G的对应点为点F,F落在y轴上,
    而HG∥y轴,
    ∴HG∥CF,HG=HF,CG=CF,
    ∠GHC=∠CHF,
    ∴∠FCH=∠CHG,
    ∴∠FCH=∠FHC,
    ∴∠GCH=∠GHC,
    ∴CG=HG,
    ∴|t2﹣t|=t,
    当t2﹣t=t时,
    解得t1=0(舍),t2=4,
    此时点P(4,0).
    当t2﹣t=﹣t时,
    解得t1=0(舍),t2=,
    此时点P(,0).
    综上,点P的坐标为(4,0)或(,0).
    【点睛】
    此题考查了待定系数法求函数解析式,点坐标转换为线段长度,几何图形与二次函数结合的问题,最后一问推出CG=HG为解题关键.
    22、(1);(2)
    【解析】
    (1)利用概率公式直接计算即可;
    (2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明和小华都选择去同一个地方游玩的情况,再利用概率公式即可求得答案.
    【详解】
    (1)∵小明准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,
    ∴小明选择去白鹿原游玩的概率=;
    (2)画树状图分析如下:

    两人选择的方案共有16种等可能的结果,其中选择同种方案有1种,
    所以小明和小华都选择去秦岭国家植物园游玩的概率=.
    【点睛】
    本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.
    23、(1)2 (2)
    【解析】
    (1)原式第一项利用负指数幂法则计算,第二项利用特殊角的三角函数值化简,第三项利用绝对值的代数意义化简,最后一项利用零指数幂法则计算可得到结果;(2)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.
    【详解】
    (1)原式==2;
    (2)



    【点睛】
    本题考查了实数运算以及平方根的应用,正确掌握相关运算法则是解题的关键.
    24、-1
    【解析】
    试题分析:根据运算顺序先分别进行负指数幂的计算、二次根式的化简、0次幂的运算、绝对值的化简,然后再进行加减法运算即可.
    试题解析:原式=-1-=-1.

    相关试卷

    福建省德化县联考2021-2022学年中考数学考试模拟冲刺卷含解析: 这是一份福建省德化县联考2021-2022学年中考数学考试模拟冲刺卷含解析,共24页。

    2022年福建省福州市第十九中学中考数学考试模拟冲刺卷含解析: 这是一份2022年福建省福州市第十九中学中考数学考试模拟冲刺卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    2022届福建省永定区第二初级中学中考数学考试模拟冲刺卷含解析: 这是一份2022届福建省永定区第二初级中学中考数学考试模拟冲刺卷含解析,共23页。试卷主要包含了答题时请按要求用笔,下列实数中是无理数的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map