2021-2022学年北京市精华校中考考前最后一卷数学试卷含解析
展开1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,矩形ABCD中,AB=8,BC=1.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是( )
A.2B.3C.5D.6
2.如图,AB是定长线段,圆心O是AB的中点,AE、BF为切线,E、F为切点,满足AE=BF,在上取动点G,国点G作切线交AE、BF的延长线于点D、C,当点G运动时,设AD=y,BC=x,则y与x所满足的函数关系式为( )
A.正比例函数y=kx(k为常数,k≠0,x>0)
B.一次函数y=kx+b(k,b为常数,kb≠0,x>0)
C.反比例函数y=(k为常数,k≠0,x>0)
D.二次函数y=ax2+bx+c(a,b,c为常数,a≠0,x>0)
3.如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(﹣1,1),点B在x轴正半轴上,点D在第三象限的双曲线上,过点C作CE∥x轴交双曲线于点E,连接BE,则△BCE的面积为( )
A.5B.6C.7D.8
4.tan30°的值为( )
A.B.C.D.
5.目前,世界上能制造出的最小晶体管的长度只有0.000 000 04m,将0.000 000 04用科学记数法表示为( )
A.0.4×108B.4×108C.4×10﹣8D.﹣4×108
6.已知实数a、b满足,则
A.B.C.D.
7.从边长为的大正方形纸板中挖去一个边长为的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙)。那么通过计算两个图形阴影部分的面积,可以验证成立的公式为( )
A.B.
C.D.
8.如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是( )
A.B.C.D.
9.下列各数是不等式组的解是( )
A.0B.C.2D.3
10.已知关于x的一元二次方程有两个相等的实根,则k的值为( )
A.B.C.2或3D.或
二、填空题(共7小题,每小题3分,满分21分)
11.在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点D是以点A为圆心4为半径的圆上一点,连接BD,点M为BD中点,线段CM长度的最大值为_____.
12.如图,在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,点D在OB上,点E在OB的延长线上,当扇形AOB的半径为2时,阴影部分的面积为__________.
13.在某公益活动中,小明对本年级同学的捐款情况进行了统计,绘制成如图所示的不完整的统计图,其中捐10元的人数占年级总人数的25%,则本次捐款20元的人数为______ 人.
14.如图,Rt△ABC中,∠ACB=90°,∠A=15°,AB的垂直平分线与AC交于点D,与AB交于点E,连接BD.若AD=14,则BC的长为_____.
15.已知n>1,M=,N=,P=,则M、N、P的大小关系为 .
16.如图,有一直径是的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC,用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为 米.
17.从一副54张的扑克牌中随机抽取一张,它是K的概率为_____.
三、解答题(共7小题,满分69分)
18.(10分)经过江汉平原的沪蓉(上海﹣成都)高速铁路即将动工.工程需要测量汉江某一段的宽度.如图①,一测量员在江岸边的A处测得对岸岸边的一根标杆B在它的正北方向,测量员从A点开始沿岸边向正东方向前进100米到达点C处,测得∠ACB=68°.
(1)求所测之处江的宽度(sin68°≈0.93,cs68°≈0.37,tan68°≈2.1.);
(2)除(1)的测量方案外,请你再设计一种测量江宽的方案,并在图②中画出图形.(不用考虑计算问题,叙述清楚即可)
19.(5分)如图,在正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边上的动点,且AE=BF=CG=DH.
(1)求证:△AEH≌△CGF;
(2)在点E、F、G、H运动过程中,判断直线EG是否经过某一个定点,如果是,请证明你的结论;如果不是,请说明理由
20.(8分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.
治理杨絮一一您选哪一项?(单选)
A.减少杨树新增面积,控制杨树每年的栽种量
B.调整树种结构,逐渐更换现有杨树
C.选育无絮杨品种,并推广种植
D.对雌性杨树注射生物干扰素,避免产生飞絮
E.其他
根据以上统计图,解答下列问题:
(1)本次接受调查的市民共有 人;
(2)扇形统计图中,扇形E的圆心角度数是 ;
(3)请补全条形统计图;
(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.
21.(10分)八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.
根据图表提供的信息,解答下列问题:八年级一班有多少名学生?请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.
22.(10分)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.
23.(12分)如图是小朋友荡秋千的侧面示意图,静止时秋千位于铅垂线BD上,转轴B到地面的距离BD=3m.小亮在荡秋千过程中,当秋千摆动到最高点A时,测得点A到BD的距离AC=2m,点A到地面的距离AE=1.8m;当他从A处摆动到A′处时,有A'B⊥AB.
(1)求A′到BD的距离;
(2)求A′到地面的距离.
24.(14分)如图,AB是半圆O的直径,过点O作弦AD的垂线交半圆O于点E,交AC于点C,使∠BED=∠C.
(1)判断直线AC与圆O的位置关系,并证明你的结论;
(2)若AC=8,cs∠BED=,求AD的长.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
试题分析:连接EF交AC于点M,由四边形EGFH为菱形可得FM=EM,EF⊥AC;利用”AAS或ASA”易证△FMC≌△EMA,根据全等三角形的性质可得AM=MC;在Rt△ABC中,由勾股定理求得AC=,且tan∠BAC=;在Rt△AME中,AM=AC=,tan∠BAC=可得EM=;在Rt△AME中,由勾股定理求得AE=2.故答案选C.
考点:菱形的性质;矩形的性质;勾股定理;锐角三角函数.
2、C
【解析】
延长AD,BC交于点Q,连接OE,OF,OD,OC,OQ,由AE与BF为圆的切线,利用切线的性质得到AE与EO垂直,BF与OF垂直,由AE=BF,OE=OF,利用HL得到直角三角形AOE与直角BOF全等,利用全等三角形的对应角相等得到∠A=∠B,利用等角对等边可得出三角形QAB为等腰三角形,由O为底边AB的中点,利用三线合一得到QO垂直于AB,得到一对直角相等,再由∠FQO与∠OQB为公共角,利用两对对应角相等的两三角形相似得到三角形FQO与三角形OQB相似,同理得到三角形EQO与三角形OAQ相似,由相似三角形的对应角相等得到∠QOE=∠QOF=∠A=∠B,再由切线长定理得到OD与OC分别为∠EOG与∠FOG的平分线,得到∠DOC为∠EOF的一半,即∠DOC=∠A=∠B,又∠GCO=∠FCO,得到三角形DOC与三角形OBC相似,同理三角形DOC与三角形DAO相似,进而确定出三角形OBC与三角形DAO相似,由相似得比例,将AD=x,BC=y代入,并将AO与OB换为AB的一半,可得出x与y的乘积为定值,即y与x成反比例函数,即可得到正确的选项.
【详解】
延长AD,BC交于点Q,连接OE,OF,OD,OC,OQ,
∵AE,BF为圆O的切线,
∴OE⊥AE,OF⊥FB,
∴∠AEO=∠BFO=90°,
在Rt△AEO和Rt△BFO中,
∵,
∴Rt△AEO≌Rt△BFO(HL),
∴∠A=∠B,
∴△QAB为等腰三角形,
又∵O为AB的中点,即AO=BO,
∴QO⊥AB,
∴∠QOB=∠QFO=90°,
又∵∠OQF=∠BQO,
∴△QOF∽△QBO,
∴∠B=∠QOF,
同理可以得到∠A=∠QOE,
∴∠QOF=∠QOE,
根据切线长定理得:OD平分∠EOG,OC平分∠GOF,
∴∠DOC=∠EOF=∠A=∠B,
又∵∠GCO=∠FCO,
∴△DOC∽△OBC,
同理可以得到△DOC∽△DAO,
∴△DAO∽△OBC,
∴,
∴AD•BC=AO•OB=AB2,即xy=AB2为定值,
设k=AB2,得到y=,
则y与x满足的函数关系式为反比例函数y=(k为常数,k≠0,x>0).
故选C.
【点睛】
本题属于圆的综合题,涉及的知识有:相似三角形的判定与性质,切线长定理,直角三角形全等的判定与性质,反比例函数的性质,以及等腰三角形的性质,做此题是注意灵活运用所学知识.
3、C
【解析】
作辅助线,构建全等三角形:过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,证明△AGD≌△DHC≌△CMB,根据点D的坐标表示:AG=DH=-x-1,由DG=BM,列方程可得x的值,表示D和E的坐标,根据三角形面积公式可得结论.
【详解】
解:过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,
设D(x,),
∵四边形ABCD是正方形,
∴AD=CD=BC,∠ADC=∠DCB=90°,
易得△AGD≌△DHC≌△CMB(AAS),
∴AG=DH=﹣x﹣1,
∴DG=BM,
∵GQ=1,DQ=﹣,DH=AG=﹣x﹣1,
由QG+DQ=BM=DQ+DH得:1﹣=﹣1﹣x﹣,
解得x=﹣2,
∴D(﹣2,﹣3),CH=DG=BM=1﹣=4,
∵AG=DH=﹣1﹣x=1,
∴点E的纵坐标为﹣4,
当y=﹣4时,x=﹣,
∴E(﹣,﹣4),
∴EH=2﹣=,
∴CE=CH﹣HE=4﹣=,
∴S△CEB=CE•BM=××4=7;
故选C.
【点睛】
考查正方形的性质、全等三角形的判定和性质、反比例函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会构建方程解决问题.
4、D
【解析】
直接利用特殊角的三角函数值求解即可.
【详解】
tan30°=,故选:D.
【点睛】
本题考查特殊角的三角函数的值的求法,熟记特殊的三角函数值是解题的关键.
5、C
【解析】
科学记数法的表示形式为a×10 的形式,其中1≤a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
0.000 000 04=4×10,
故选C
【点睛】
此题考查科学记数法,难度不大
6、C
【解析】
根据不等式的性质进行判断.
【详解】
解:A、,但不一定成立,例如:,故本选项错误;
B、,但不一定成立,例如:,,故本选项错误;
C、时,成立,故本选项正确;
D、时,成立,则不一定成立,故本选项错误;
故选C.
【点睛】
考查了不等式的性质要认真弄清不等式的基本性质与等式的基本性质的异同,特别是在不等式两边同乘以或除以同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.
7、D
【解析】
分别根据正方形及平行四边形的面积公式求得甲、乙中阴影部分的面积,从而得到可以验证成立的公式.
【详解】
阴影部分的面积相等,即甲的面积=a2﹣b2,乙的面积=(a+b)(a﹣b).
即:a2﹣b2=(a+b)(a﹣b).
所以验证成立的公式为:a2﹣b2=(a+b)(a﹣b).
故选:D.
【点睛】
考点:等腰梯形的性质;平方差公式的几何背景;平行四边形的性质.
8、C
【解析】
分析:细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.
详解:从左边看竖直叠放2个正方形.
故选:C.
点睛:此题考查了几何体的三种视图和学生的空间想象能力,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.
9、D
【解析】
求出不等式组的解集,判断即可.
【详解】
,
由①得:x>-1,
由②得:x>2,
则不等式组的解集为x>2,即3是不等式组的解,
故选D.
【点睛】
此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.
10、A
【解析】
根据方程有两个相等的实数根结合根的判别式即可得出关于k的方程,解之即可得出结论.
【详解】
∵方程有两个相等的实根,
∴△=k2-4×2×3=k2-24=0,
解得:k=.
故选A.
【点睛】
本题考查了根的判别式,熟练掌握“当△=0时,方程有两个相等的两个实数根”是解题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、1
【解析】
作AB的中点E,连接EM、CE,根据直角三角形斜边上的中线等于斜边的一半以及三角形的中位线定理求得CE和EM的长,然后在△CEM中根据三边关系即可求解.
【详解】
作AB的中点E,连接EM、CE,
在直角△ABC中,AB===10,
∵E是直角△ABC斜边AB上的中点,
∴CE=AB=5,
∵M是BD的中点,E是AB的中点,
∴ME=AD=2,
∴在△CEM中,5-2≤CM≤5+2,即3≤CM≤1,
∴最大值为1,
故答案为1.
【点睛】
本题考查了点与圆的位置关系、三角形的中位线定理的知识,要结合勾股定理、直角三角形斜边上的中线等于斜边的一半解答.
12、π﹣1
【解析】
根据勾股定理可求OC的长,根据题意可得出阴影部分的面积=扇形BOC的面积-三角形ODC的面积,依此列式计算即可求解.
【详解】
连接OC
∵在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,
∴∠COD=45°,
∴OC=CD=1 ,
∴CD=OD=1,
∴阴影部分的面积=扇形BOC的面积﹣三角形ODC的面积
= ﹣×11
=π﹣1.
故答案为π﹣1.
【点睛】
本题考查正方形的性质和扇形面积的计算,解题关键是得到扇形半径的长度.
13、35
【解析】
分析:根据捐款10元的人数占总人数25%可得捐款总人数,将总人数减去其余各组人数可得答案.
详解:根据题意可知,本年级捐款捐款的同学一共有20÷25%=80(人),
则本次捐款20元的有:80−(20+10+15)=35(人),
故答案为:35.
点睛:本题考查了条形统计图.计算出捐款总人数是解决问题的关键.
14、1
【解析】
解:∵DE是AB的垂直平分线,∴AD=BD=14,∴∠A=∠ABD=15°,∴∠BDC=∠A+∠ABD=15°+15°=30°.在Rt△BCD中,BC=BD=×14=1.故答案为1.
点睛:本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,30°角所对的直角边等于斜边的一半的性质,熟记性质是解答本题的关键.
15、M>P>N
【解析】
∵n>1,
∴n-1>0,n>n-1,
∴M>1,0
,
∴,
∴M>P>N.
点睛:本题考查了不等式的性质和利用作差法比较两个代数式的大小.作差法比较大小的方法是:如果a-b>0,那么a>b; 如果a-b=0,那么a=b; 如果a-b<0,那么ab,b>c,那么a>b>c.
16、
【解析】
先利用△ABC为等腰直角三角形得到AB=1,再设圆锥的底面圆的半径为r,则根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2πr=,然后解方程即可.
【详解】
∵⊙O的直径BC=,
∴AB=BC=1,
设圆锥的底面圆的半径为r,
则2πr=,解得r=,
即圆锥的底面圆的半径为米故答案为.
17、
【解析】
根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.
【详解】
一副扑克牌共有54张,其中只有4张K,
∴从一副扑克牌中随机抽出一张牌,得到K的概率是=,
故答案为:.
【点睛】
此题考查了概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
三、解答题(共7小题,满分69分)
18、 (1)21米(2)见解析
【解析】
试题分析:(1)根据题意易发现,直角三角形ABC中,已知AC的长度,又知道了∠ACB的度数,那么AB的长就不难求出了.
(2)从所画出的图形中可以看出是利用三角形全等、三角形相似、解直角三角形的知识来解决问题的.
解:(1)在Rt△BAC中,∠ACB=68°,
∴AB=AC•tan68°≈100×2.1=21(米)
答:所测之处江的宽度约为21米.
(2)
①延长BA至C,测得AC做记录;②从C沿平行于河岸的方向走到D,测得CD,做记录;③测AE,做记录.根据△BAE∽△BCD,得到比例线段,从而解答
19、(1)见解析;(2)直线EG经过一个定点,这个定点为正方形的中心(AC、BD的交点);理由见解析.
【解析】
分析:(1)由正方形的性质得出∠A=∠C=90°,AB=BC=CD=DA,由AE=BF=CG=DH证出AH=CF,由SAS证明△AEH≌△CGF即可求解;
(2)连接AC、EG,交点为O;先证明△AOE≌△COG,得出OA=OC,证出O为对角线AC、BD的交点,即O为正方形的中心.
详解:(1)证明:∵四边形ABCD是正方形,
∴∠A=∠C=90°,AB=BC=CD=DA,
∵AE=BF=CG=DH,
∴AH=CF,
在△AEH与△CGF中,
AH=CF,∠A=∠C,AE=CG,
∴△AEH≌△CGF(SAS);
(2)直线EG经过一个定点,这个定点为正方形的中心(AC、BD的交点);理由如下:
连接AC、EG,交点为O;如图所示:
∵四边形ABCD是正方形,
∴AB∥CD,
∴∠OAE=∠OCG,
在△AOE和△COG中,
∠OAE=∠OCG,∠AOE=∠COG,AE=CG,
∴△AOE≌△COG(AAS),
∴OA=OC,OE=OG,
即O为AC的中点,
∵正方形的对角线互相平分,
∴O为对角线AC、BD的交点,即O为正方形的中心.
点睛:考查了正方形的性质与判定、全等三角形的判定与性质等知识;本题综合性强,有一定难度,特别是(2)中,需要通过作辅助线证明三角形全等才能得出结果.
20、(1)2000;(2)28.8°;(3)补图见解析;(4)36万人.
【解析】
分析:(1)将A选项人数除以总人数即可得;
(2)用360°乘以E选项人数所占比例可得;
(3)用总人数乘以D选项人数所占百分比求得其人数,据此补全图形即可得;
(4)用总人数乘以样本中C选项人数所占百分比可得.
详解:(1)本次接受调查的市民人数为300÷15%=2000人,
(2)扇形统计图中,扇形E的圆心角度数是360°×=28.8°,
(3)D选项的人数为2000×25%=500,
补全条形图如下:
(4)估计赞同“选育无絮杨品种,并推广种植”的人数为90×40%=36(万人).
点睛:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
21、(1)41(2)15%(3)
【解析】
(1)用散文的频数除以其频率即可求得样本总数;
(2)根据其他类的频数和总人数求得其百分比即可;
(3)画树状图得出所有等可能的情况数,找出恰好是丙与乙的情况,即可确定出所求概率.
【详解】
(1)∵喜欢散文的有11人,频率为1.25,
∴m=11÷1.25=41;
(2)在扇形统计图中,“其他”类所占的百分比为 ×111%=15%,
故答案为15%;
(3)画树状图,如图所示:
所有等可能的情况有12种,其中恰好是丙与乙的情况有2种,
∴P(丙和乙)==.
22、(1)y=﹣3x2+252x﹣1(2≤x≤54);(2)商场每天销售这种商品的销售利润不能达到500元.
【解析】
(1)此题可以按等量关系“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,并由售价大于进价,且销售量大于零求得自变量的取值范围.
(2)根据(1)所得的函数关系式,利用配方法求二次函数的最值即可得出答案.
【详解】
(1)由题意得:每件商品的销售利润为(x﹣2)元,那么m件的销售利润为y=m(x﹣2).
又∵m=162﹣3x,∴y=(x﹣2)(162﹣3x),即y=﹣3x2+252x﹣1.
∵x﹣2≥0,∴x≥2.
又∵m≥0,∴162﹣3x≥0,即x≤54,∴2≤x≤54,∴所求关系式为y=﹣3x2+252x﹣1(2≤x≤54).
(2)由(1)得y=﹣3x2+252x﹣1=﹣3(x﹣42)2+432,所以可得售价定为42元时获得的利润最大,最大销售利润是432元.
∵500>432,∴商场每天销售这种商品的销售利润不能达到500元.
【点睛】
本题考查了二次函数在实际生活中的应用,解答本题的关键是根据等量关系:“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,另外要熟练掌握二次函数求最值的方法.
23、(1)A'到BD的距离是1.2m;(2)A'到地面的距离是1m.
【解析】
(1)如图2,作A'F⊥BD,垂足为F.根据同角的余角相等证得∠2=∠3;再利用AAS证明△ACB≌△BFA',根据全等三角形的性质即可得A'F=BC,根据BC=BD﹣CD求得BC的长,即可得A'F的长,从而求得A'到BD的距离;(2)作A'H⊥DE,垂足为H,可证得A'H=FD,根据A'H=BD﹣BF求得A'H的长,从而求得A'到地面的距离.
【详解】
(1)如图2,作A'F⊥BD,垂足为F.
∵AC⊥BD,
∴∠ACB=∠A'FB=90°;
在Rt△A'FB中,∠1+∠3=90°;
又∵A'B⊥AB,∴∠1+∠2=90°,
∴∠2=∠3;
在△ACB和△BFA'中,
,
∴△ACB≌△BFA'(AAS);
∴A'F=BC,
∵AC∥DE且CD⊥AC,AE⊥DE,
∴CD=AE=1.8;
∴BC=BD﹣CD=3﹣1.8=1.2,
∴A'F=1.2,即A'到BD的距离是1.2m.
(2)由(1)知:△ACB≌△BFA',
∴BF=AC=2m,
作A'H⊥DE,垂足为H.
∵A'F∥DE,
∴A'H=FD,
∴A'H=BD﹣BF=3﹣2=1,即A'到地面的距离是1m.
【点睛】
本题考查了全等三角形的判定与性质的应用,作出辅助线,证明△ACB≌△BFA'是解决问题的关键.
24、(1)AC与⊙O相切,证明参见解析;(2).
【解析】
试题分析:(1)由于OC⊥AD,那么∠OAD+∠AOC=90°,又∠BED=∠BAD,且∠BED=∠C,于是∠OAD=∠C,从而有∠C+∠AOC=90°,再利用三角形内角和定理,可求∠OAC=90°,即AC是⊙O的切线;(2)连接BD,AB是直径,那么∠ADB=90°,在Rt△AOC中,由于AC=8,∠C=∠BED,cs∠BED=,利用三角函数值,可求OA=6,即AB=12,在Rt△ABD中,由于AB=12,∠OAD=∠BED,cs∠BED=,同样利用三角函数值,可求AD.
试题解析:(1)AC与⊙O相切.∵弧BD是∠BED与∠BAD所对的弧,∴∠BAD=∠BED,∵OC⊥AD,∴∠AOC+∠BAD=90°,∴∠BED+∠AOC=90°,即∠C+∠AOC=90°,∴∠OAC=90°,∴AB⊥AC,即AC与⊙O相切;(2)连接BD.∵AB是⊙O直径,∴∠ADB=90°,在Rt△AOC中,∠CAO=90°,∵AC=8,∠ADB=90°,cs∠C=cs∠BED=,∴AO=6,∴AB=12,在Rt△ABD中,∵cs∠OAD=cs∠BED=,∴AD=AB•cs∠OAD=12×=.
考点:1.切线的判定;2.解直角三角形.
类别
频数(人数)
频率
小说
0.5
戏剧
4
散文
10
0.25
其他
6
合计
1
广东省中学山市十二校联考2021-2022学年中考考前最后一卷数学试卷含解析: 这是一份广东省中学山市十二校联考2021-2022学年中考考前最后一卷数学试卷含解析,共25页。试卷主要包含了考生必须保证答题卡的整洁,如图,,则的度数为等内容,欢迎下载使用。
北京市西城区(南区)2021-2022学年中考考前最后一卷数学试卷含解析: 这是一份北京市西城区(南区)2021-2022学年中考考前最后一卷数学试卷含解析,共19页。试卷主要包含了如图所示等内容,欢迎下载使用。
2021-2022学年山东省济南槐荫区五校联考中考考前最后一卷数学试卷含解析: 这是一份2021-2022学年山东省济南槐荫区五校联考中考考前最后一卷数学试卷含解析,共20页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。