2021-2022学年福建省泉州市晋江市中考数学押题试卷含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.观察下列图形,则第n个图形中三角形的个数是( )
A.2n+2 B.4n+4 C.4n﹣4 D.4n
2.已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中一位同学的年龄登记错误,将14岁写成15岁,经重新计算后,正确的平均数为a岁,中位数为b岁,则下列结论中正确的是( )
A.a<13,b=13 B.a<13,b<13 C.a>13,b<13 D.a>13,b=13
3.在实数0,-π,,-4中,最小的数是( )
A.0 B.-π C. D.-4
4.下面的统计图反映了我市2011﹣2016年气温变化情况,下列说法不合理的是( )
A.2011﹣2014年最高温度呈上升趋势
B.2014年出现了这6年的最高温度
C.2011﹣2015年的温差成下降趋势
D.2016年的温差最大
5.若不等式组无解,那么m的取值范围是( )
A.m≤2 B.m≥2 C.m<2 D.m>2
6.化简的结果为( )
A.﹣1 B.1 C. D.
7.对于有理数x、y定义一种运算“”:,其中a、b、c为常数,等式右边是通常的加法与乘法运算,已知,,则的值为( )
A.-1 B.-11 C.1 D.11
8.下列各式正确的是( )
A. B.
C. D.
9.如图直线y=mx与双曲线y=交于点A、B,过A作AM⊥x轴于M点,连接BM,若S△AMB=2,则k的值是( )
A.1 B.2 C.3 D.4
10.在下面的四个几何体中,左视图与主视图不相同的几何体是( )
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.不等式组有2个整数解,则m的取值范围是_____.
12.如图,小红将一个正方形纸片剪去一个宽为4cm的长条后,再从剩下的长方形纸片上剪去一个宽为5cm的长条,且剪下的两个长条的面积相等.问这个正方形的边长应为多少厘米?设正方形边长为xcm,则可列方程为_____.
13.已知点P在一次函数y=kx+b(k,b为常数,且k<0,b>0)的图象上,将点P向左平移1个单位,再向上平移2个单位得到点Q,点Q也在该函数y=kx+b的图象上.
(1)k的值是 ;
(2)如图,该一次函数的图象分别与x轴、y轴交于A,B两点,且与反比例函数y=图象交于C,D两点(点C在第二象限内),过点C作CE⊥x轴于点E,记S1为四边形CEOB的面积,S2为△OAB的面积,若=,则b的值是 .
14.如图,以长为18的线段AB为直径的⊙O交△ABC的边BC于点D,点E在AC上,直线DE与⊙O相切于点D.已知∠CDE=20°,则的长为_____.
15.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的正弦值为__.
16.二次函数y=(a-1)x2-x+a2-1 的图象经过原点,则a的值为______.
三、解答题(共8题,共72分)
17.(8分)如图,直线y=2x+6与反比例函数y=(k>0)的图像交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图像于点M,交AB于点N,连接BM.
(1)求m的值和反比例函数的表达式;
(2)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?
18.(8分)如图1,在平面直角坐标系中,直线y=﹣x+1与抛物线y=ax2+bx+c(a≠0)相交于点A(1,0)和点D(﹣4,5),并与y轴交于点C,抛物线的对称轴为直线x=﹣1,且抛物线与x轴交于另一点B.
(1)求该抛物线的函数表达式;
(2)若点E是直线下方抛物线上的一个动点,求出△ACE面积的最大值;
(3)如图2,若点M是直线x=﹣1的一点,点N在抛物线上,以点A,D,M,N为顶点的四边形能否成为平行四边形?若能,请直接写出点M的坐标;若不能,请说明理由.
19.(8分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:
接受问卷调查的学生共有 人,扇形统计图中“基本了解”部分所对应扇形的圆心角为 度;请补全条形统计图;若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.
20.(8分)如图,抛物线y=x2+bx+c与x轴交于点A(﹣1,0),B(4,0)与y轴交于点C,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线1,交抛物线与点Q.求抛物线的解析式;当点P在线段OB上运动时,直线1交BD于点M,试探究m为何值时,四边形CQMD是平行四边形;在点P运动的过程中,坐标平面内是否存在点Q,使△BDQ是以BD为直角边的直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.
21.(8分)为提高城市清雪能力,某区增加了机械清雪设备,现在平均每天比原来多清雪300立方米,现在清雪4 000立方米所需时间与原来清雪3 000立方米所需时间相同,求现在平均每天清雪量.
22.(10分)某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下面是水平放置的破裂管道有水部分的截面.若这个输水管道有水部分的水面宽,水面最深地方的高度为4cm,求这个圆形截面的半径.
23.(12分)如图,AB为⊙O的直径,点E在⊙O上,C为的中点,过点C作直线CD⊥AE于D,连接AC、BC.
(1)试判断直线CD与⊙O的位置关系,并说明理由;
(2)若AD=2,AC=,求AB的长.
24.如图,已知△ABC中,AB=BC=5,tan∠ABC=.求边AC的长;设边BC的垂直平分线与边AB的交点为D,求的值.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
试题分析:由已知的三个图可得到一般的规律,即第n个图形中三角形的个数是4n,根据一般规律解题即可.
解:根据给出的3个图形可以知道:
第1个图形中三角形的个数是4,
第2个图形中三角形的个数是8,
第3个图形中三角形的个数是12,
从而得出一般的规律,第n个图形中三角形的个数是4n.
故选D.
考点:规律型:图形的变化类.
2、A
【解析】
试题解析:∵原来的平均数是13岁,
∴13×23=299(岁),
∴正确的平均数a=≈12.97<13,
∵原来的中位数13岁,将14岁写成15岁,最中间的数还是13岁,
∴b=13;
故选A.
考点:1.平均数;2.中位数.
3、D
【解析】
根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.
【详解】
∵正数大于0和一切负数,
∴只需比较-π和-1的大小,
∵|-π|<|-1|,
∴最小的数是-1.
故选D.
【点睛】
此题主要考查了实数的大小的比较,注意两个无理数的比较方法:统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.
4、C
【解析】
利用折线统计图结合相应数据,分别分析得出符合题意的答案.
【详解】
A选项:年最高温度呈上升趋势,正确;
B选项:2014年出现了这6年的最高温度,正确;
C选项:年的温差成下降趋势,错误;
D选项:2016年的温差最大,正确;
故选C.
【点睛】
考查了折线统计图,利用折线统计图获取正确信息是解题关键.
5、A
【解析】
先求出每个不等式的解集,再根据不等式组解集的求法和不等式组无解的条件,即可得到m的取值范围.
【详解】
由①得,x<m,
由②得,x>1,
又因为不等式组无解,
所以m≤1.
故选A.
【点睛】
此题的实质是考查不等式组的求法,求不等式组的解集,要根据以下原则:同大取较大,同小较小,小大大小中间找,大大小小解不了.
6、B
【解析】
先把分式进行通分,把异分母分式化为同分母分式,再把分子相加,即可求出答案.
【详解】
解:.
故选B.
7、B
【解析】
先由运算的定义,写出3△5=25,4△7=28,得到关于a、b、c的方程组,用含c的代数式表示出a、b.代入2△2求出值.
【详解】
由规定的运算,3△5=3a+5b+c=25,4a+7b+c=28
所以
解这个方程组,得
所以2△2=a+b+c=-35-2c+24+c+c=-2.
故选B.
【点睛】
本题考查了新运算、三元一次方程组的解法.解决本题的关键是根据新运算的意义,正确的写出3△5=25,4△7=28,2△2.
8、A
【解析】
∵,则B错;,则C;,则D错,故选A.
9、B
【解析】
此题可根据反比例函数图象的对称性得到A、B两点关于原点对称,再由S△ABM=1S△AOM并结合反比例函数系数k的几何意义得到k的值.
【详解】
根据双曲线的对称性可得:OA=OB,则S△ABM=1S△AOM=1,S△AOM=|k|=1,
则k=±1.又由于反比例函数图象位于一三象限,k>0,所以k=1.
故选B.
【点睛】
本题主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.
10、B
【解析】
由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解.
【详解】
A、正方体的左视图与主视图都是正方形,故A选项不合题意;
B、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B选项与题意相符;
C、球的左视图与主视图都是圆,故C选项不合题意;
D、圆锥左视图与主视图都是等腰三角形,故D选项不合题意;
故选B.
【点睛】
本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、1<m≤2
【解析】
首先根据不等式恰好有个整数解求出不等式组的解集为,再确定.
【详解】
不等式组有个整数解,
其整数解有、这个,
.
故答案为:.
【点睛】
此题主要考查了解不等式组,关键是正确理解解集的规律:同大取大,同小取小,大小小大中间找,大大小小找不到.
12、4x=5(x-4)
【解析】
按照面积作为等量关系列方程有4x=5(x﹣4).
13、(1)-2;(2)
【解析】
(1)设点P的坐标为(m,n),则点Q的坐标为(m−1,n+2),
依题意得:
,
解得:k=−2.
故答案为−2.
(2)∵BO⊥x轴,CE⊥x轴,
∴BO∥CE,
∴△AOB∽△AEC.
又∵,
∴
令一次函数y=−2x+b中x=0,则y=b,
∴BO=b;
令一次函数y=−2x+b中y=0,则0=−2x+b,
解得:x=,即AO=.
∵△AOB∽△AEC,且,
∴,
∴AE=,AO=,CE=BO=b,OE=AE−AO=.
∵OE⋅CE=|−4|=4,即=4,
解得:b=,或b=− (舍去).
故答案为.
14、7π
【解析】
连接OD,由切线的性质和已知条件可求出∠AOD的度数,再根据弧长公式即可求出的长.
【详解】
连接OD,
∵直线DE与⊙O相切于点D,
∴∠EDO=90°,
∵∠CDE=20°,
∴∠ODB=180°-90°-20°=70°,
∵OD=OB,
∴∠ODB=∠OBD=70°,
∴∠AOD=140°,
∴的长==7π,
故答案为:7π.
【点睛】
本题考查了切线的性质、等腰三角形的判断和性质以及弧长公式的运用,求出∠AOD的度数是解题的关键.
15、
【解析】
首先利用勾股定理计算出AB2,BC2,AC2,再根据勾股定理逆定理可证明∠BCA=90°,然后得到∠ABC的度数,再利用特殊角的三角函数可得∠ABC的正弦值.
【详解】
解:
连接AC
AB2=32+12=10,BC2=22+12=5,AC2=22+12=5,
∴AC=CB,BC2+AC2=AB2,
∴∠BCA=90°,
∴∠ABC=45°,
∴∠ABC的正弦值为.
故答案为:.
【点睛】
此题主要考查了锐角三角函数,以及勾股定理逆定理,关键是掌握特殊角的三角函数.
16、-1
【解析】
将(2,2)代入y=(a-1)x2-x+a2-1 即可得出a的值.
【详解】
解:∵二次函数y=(a-1)x2-x+a2-1 的图象经过原点,
∴a2-1=2,
∴a=±1,
∵a-1≠2,
∴a≠1,
∴a的值为-1.
故答案为-1.
【点睛】
本题考查了二次函数图象上点的坐标特征,图象过原点,可得出x=2时,y=2.
三、解答题(共8题,共72分)
17、(1)m=8,反比例函数的表达式为y=;(2)当n=3时,△BMN的面积最大.
【解析】
(1)求出点A的坐标,利用待定系数法即可解决问题;
(2)构造二次函数,利用二次函数的性质即可解决问题.
【详解】
解:(1)∵直线y=2x+6经过点A(1,m),
∴m=2×1+6=8,
∴A(1,8),
∵反比例函数经过点A(1,8),
∴8=,
∴k=8,
∴反比例函数的解析式为y=.
(2)由题意,点M,N的坐标为M(,n),N(,n),
∵0<n<6,
∴<0,
∴S△BMN=×(||+||)×n=×(﹣+)×n=﹣(n﹣3)2+,
∴n=3时,△BMN的面积最大.
18、(1)y=x2+2x﹣3;(2);(3)详见解析.
【解析】
试题分析:(1)先利用抛物线的对称性确定出点B的坐标,然后设抛物线的解析式为y=a(x+3)(x-1),将点D的坐标代入求得a的值即可;
(2)过点E作EF∥y轴,交AD与点F,过点C作CH⊥EF,垂足为H.设点E(m,m2+2m-3),则F(m,-m+1),则EF=-m2-3m+4,然后依据△ACE的面积=△EFA的面积-△EFC的面积列出三角形的面积与m的函数关系式,然后利用二次函数的性质求得△ACE的最大值即可;
(3)当AD为平行四边形的对角线时.设点M的坐标为(-1,a),点N的坐标为(x,y),利用平行四边形对角线互相平分的性质可求得x的值,然后将x=-2代入求得对应的y值,然后依据=,可求得a的值;当AD为平行四边形的边时.设点M的坐标为(-1,a).则点N的坐标为(-6,a+5)或(4,a-5),将点N的坐标代入抛物线的解析式可求得a的值.
试题解析:(1)∴A(1,0),抛物线的对称轴为直线x=-1,
∴B(-3,0),
设抛物线的表达式为y=a(x+3)(x-1),
将点D(-4,5)代入,得5a=5,解得a=1,
∴抛物线的表达式为y=x2+2x-3;
(2)过点E作EF∥y轴,交AD与点F,交x轴于点G,过点C作CH⊥EF,垂足为H.
设点E(m,m2+2m-3),则F(m,-m+1).
∴EF=-m+1-m2-2m+3=-m2-3m+4.
∴S△ACE=S△EFA-S△EFC=EF·AG-EF·HC=EF·OA=- (m+)2+.
∴△ACE的面积的最大值为;
(3)当AD为平行四边形的对角线时:
设点M的坐标为(-1,a),点N的坐标为(x,y).
∴平行四边形的对角线互相平分,
∴=,=,
解得x=-2,y=5-a,
将点N的坐标代入抛物线的表达式,得5-a=-3,
解得a=8,
∴点M的坐标为(-1,8),
当AD为平行四边形的边时:
设点M的坐标为(-1,a),则点N的坐标为(-6,a+5)或(4,a-5),
∴将x=-6,y=a+5代入抛物线的表达式,得a+5=36-12-3,解得a=16,
∴M(-1,16),
将x=4,y=a-5代入抛物线的表达式,得a-5=16+8-3,解得a=26,
∴M(-1,26),
综上所述,当点M的坐标为(-1,26)或(-1,16)或(-1,8)时,以点A,D,M,N为顶点的四边形能成为平行四边形.
19、 (1) 60,90;(2)见解析;(3) 300人
【解析】
(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“基本了解”部分所对应扇形的圆心角;
(2)由(1)可求得了解的人数,继而补全条形统计图;
(3)利用样本估计总体的方法,即可求得答案.
【详解】
解:(1)∵了解很少的有30人,占50%,
∴接受问卷调查的学生共有:30÷50%=60(人);
∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:×360°=90°;
故答案为60,90;
(2)60﹣15﹣30﹣10=5;
补全条形统计图得:
(3)根据题意得:900×=300(人),
则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人.
【点睛】
本题考查了条形统计图与扇形统计图,解题的关键是熟练的掌握条形统计图与扇形统计图的相关知识点.
20、 (1) ;(2) 当m=2时,四边形CQMD为平行四边形;(3) Q1(8,18)、Q2(﹣1,0)、Q3(3,﹣2)
【解析】
(1)直接将A(-1,0),B(4,0)代入抛物线y=x2+bx+c方程即可;
(2)由(1)中的解析式得出点C的坐标C(0,-2),从而得出点D(0,2),求出直线BD:y=−x+2,设点M(m,−m+2),Q(m,m2−m−2),可得MQ=−m2+m+4,根据平行四边形的性质可得QM=CD=4,即−m2+m+4=4可解得m=2;
(3)由Q是以BD为直角边的直角三角形,所以分两种情况讨论,①当∠BDQ=90°时,则BD2+DQ2=BQ2,列出方程可以求出Q1(8,18),Q2(-1,0),②当∠DBQ=90°时,则BD2+BQ2=DQ2,列出方程可以求出Q3(3,-2).
【详解】
(1)由题意知,
∵点A(﹣1,0),B(4,0)在抛物线y=x2+bx+c上,
∴解得:
∴所求抛物线的解析式为
(2)由(1)知抛物线的解析式为,令x=0,得y=﹣2
∴点C的坐标为C(0,﹣2)
∵点D与点C关于x轴对称
∴点D的坐标为D(0,2)
设直线BD的解析式为:y=kx+2且B(4,0)
∴0=4k+2,解得:
∴直线BD的解析式为:
∵点P的坐标为(m,0),过点P作x轴的垂线1,交BD于点M,交抛物线与点Q
∴可设点M,Q
∴MQ=
∵四边形CQMD是平行四边形
∴QM=CD=4,即=4
解得:m1=2,m2=0(舍去)
∴当m=2时,四边形CQMD为平行四边形
(3)由题意,可设点Q且B(4,0)、D(0,2)
∴BQ2=
DQ2=
BD2=20
①当∠BDQ=90°时,则BD2+DQ2=BQ2,
∴
解得:m1=8,m2=﹣1,此时Q1(8,18),Q2(﹣1,0)
②当∠DBQ=90°时,则BD2+BQ2=DQ2,
∴
解得:m3=3,m4=4,(舍去)此时Q3(3,﹣2)
∴满足条件的点Q的坐标有三个,分别为:Q1(8,18)、Q2(﹣1,0)、Q3(3,﹣2).
【点睛】
此题考查了待定系数法求解析式,还考查了平行四边形及直角三角形的定义,要注意第3问分两种情形求解.
21、现在平均每天清雪量为1立方米.
【解析】
分析:设现在平均每天清雪量为x立方米,根据等量关系“现在清雪4 000立方米所需时间与原来清雪3 000立方米所需时间相同”列分式方程求解.
详解:设现在平均每天清雪量为x立方米,
由题意,得
解得 x=1.
经检验x=1是原方程的解,并符合题意.
答:现在平均每天清雪量为1立方米.
点睛:此题主要考查了分式方程的应用,关键是确定问题的等量关系,注意解分式方程的时候要进行检验.
22、这个圆形截面的半径为10cm.
【解析】
分析:先作辅助线,利用垂径定理求出半径,再根据勾股定理计算.
解答:解:如图,OE⊥AB交AB于点D,
则DE=4,AB=16,AD=8,
设半径为R,
∴OD=OE-DE=R-4,
由勾股定理得,OA2=AD2+OD2,
即R2=82+(R-4)2,
解得,R=10cm.
23、(1)证明见解析(2)3
【解析】
(1)连接,由为的中点,得到,等量代换得到,根据平行线的性质得到,即可得到结论;
(2)连接,由勾股定理得到,根据切割线定理得到,根据勾股定理得到,由圆周角定理得到,即可得到结论.
【详解】
相切,连接,
∵为的中点,
∴,
∵,
∴,
∴,
∴,
∵,
∴,
∴直线与相切;
方法:连接,
∵,,
∵,
∴,
∵是的切线,
∴,
∴,
∴,
∵为的中点,
∴,
∵为的直径,
∴,
∴.
方法:∵,
易得,
∴,
∴.
【点睛】
本题考查了直线与圆的位置关系,切线的判定和性质,圆周角定理,勾股定理,平行线的性质,切割线定理,熟练掌握各定理是解题的关键.
24、(1)AC=;(2).
【解析】
【分析】(1)过A作AE⊥BC,在直角三角形ABE中,利用锐角三角函数定义求出AC的长即可;
(2)由DF垂直平分BC,求出BF的长,利用锐角三角函数定义求出DF的长,利用勾股定理求出BD的长,进而求出AD的长,即可求出所求.
【详解】(1)如图,过点A作AE⊥BC,
在Rt△ABE中,tan∠ABC=,AB=5,
∴AE=3,BE=4,
∴CE=BC﹣BE=5﹣4=1,
在Rt△AEC中,根据勾股定理得:AC==;
(2)∵DF垂直平分BC,
∴BD=CD,BF=CF=,
∵tan∠DBF=,
∴DF=,
在Rt△BFD中,根据勾股定理得:BD==,
∴AD=5﹣=,
则.
【点睛】本题考查了解直角三角形的应用,正确添加辅助线、根据边角关系熟练应用三角函数进行解答是解题的关键.
福建省泉州市洛江区重点达标名校2021-2022学年中考数学押题试卷含解析: 这是一份福建省泉州市洛江区重点达标名校2021-2022学年中考数学押题试卷含解析,共17页。试卷主要包含了答题时请按要求用笔,下列说法正确的是等内容,欢迎下载使用。
福建省晋江市2021-2022学年中考数学押题试卷含解析: 这是一份福建省晋江市2021-2022学年中考数学押题试卷含解析,共22页。试卷主要包含了下列运算结果正确的是,二次函数y=﹣等内容,欢迎下载使用。
2022届福建省泉州市晋江市中考猜题数学试卷含解析: 这是一份2022届福建省泉州市晋江市中考猜题数学试卷含解析,共21页。试卷主要包含了化简÷的结果是,下列各式正确的是等内容,欢迎下载使用。