山东省烟台市2022年九年级数学中考复习《解答题常考热点》中档题专题提升训练
展开这是一份山东省烟台市2022年九年级数学中考复习《解答题常考热点》中档题专题提升训练,共25页。试卷主要包含了连接DE′,等内容,欢迎下载使用。
山东省烟台市2022年春九年级数学中考复习《解答题常考热点》
中档题专题提升训练(附答案)
1.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,两车在途中相遇时,快车恰巧出现故障,慢车继续驶往甲地,快车维修好后按原速继续行驶乙地,两车到达各地终点后停止,两车之间的距离s(km)与慢车行驶的时间t(h)之间的关系如图:
(1)快车的速度为 km/h,C点的坐标为 .
(2)慢车出发多少小时后,两车相距200km.
2.如图,在平面直角坐标系中,已知点A(8,1),B(0,﹣3),反比例函数y=(x>0)的图象经过点A,动直线x=t(0<t<8)与反比例函数的图象交于点M,与直线AB交于点N.
(1)求k的值;
(2)求△BMN面积的最大值;
(3)若MA⊥AB,求t的值.
3.超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加x元,每天售出y件.
(1)请写出y与x之间的函数表达式;
(2)当x为多少时,超市每天销售这种玩具可获利润2250元?
(3)设超市每天销售这种玩具可获利w元,当x为多少时w最大,最大值是多少?
4.如图,已知反比例函数的图象与一次函数y=k2x+b的图象交于A、B两点,A(2,n),B(﹣1,﹣2).
(1)求反比例函数和一次函数的关系式;
(2)在直线AB上是否存在一点P,使△APO∽△AOB?若存在,求P点坐标;若不存在,请说明理由.
5.如图,为了测量山坡上一棵树PQ的高度,小明在点A处利用测角仪测得树顶P的仰角为45°,然后他沿着正对树PQ的方向前进10m到达点B处,此时测得树顶P和树底Q的仰角分别是60°和30°,设PQ垂直于AB,且垂足为C.
(1)求∠BPQ的度数;
(2)求树PQ的高度(结果精确到0.1m,≈1.73).
6.某数学兴趣小组,利用树影测量树高.已测出树AB的影长AC为9米,并测出此时太阳光线与地面成30°夹角.
(1)求出树高AB;
(2)因水土流失,此时树AB沿太阳光线方向倒下,在倾倒过程中,树影长度发生了变化,假设太阳光线与地面夹角保持不变,试求树影的最大长度.(计算结果精确到0.1米,参考数据:≈1.414,≈1.732)
7.如图,在△ABC中,AB=AC,点E在边BC上移动(点E不与点B,C重合),满足∠DEF=∠B,且点D、F分别在边AB、AC上.
(1)求证:△BDE∽△CEF;
(2)当点E移动到BC的中点时,求证:FE平分∠DFC.
8.如图,在正方形ABCD中,以对角线AC为一边作一等边△ACE,连接ED并延长交AC于点F.
(Ⅰ)求证:EF⊥AC;
(Ⅱ)延长AD交CE于点G,试确定线段DG和线段DE的数量关系.
9.如图,四边形ABCD中,∠A=∠ABC=90°,AD=1,BC=3,E是边CD的中点,连接BE并延长与AD的延长线相交于点F.
(1)求证:四边形BDFC是平行四边形;
(2)若△BCD是等腰三角形,求四边形BDFC的面积.
10.(1)如图1,在△ABC中,BA=BC,D,E是AC边上的两点,且满足∠DBE=∠ABC(0°<∠CBE<∠ABC).以点B为旋转中心,将△BEC按逆时针旋转∠ABC,得到△BE′A(点C与点A重合,点E到点E′处)连接DE′,
求证:DE′=DE.
(2)如图2,在△ABC中,BA=BC,∠ABC=90°,D,E是AC边上的两点,且满足∠DBE=∠ABC(0°<∠CBE<45°).
求证:DE2=AD2+EC2.
11.如图,在▱ABCD中,AE、BF分别平分∠DAB和∠ABC,交CD于点E、F,AE、BF相交于点M.
(1)试说明:AE⊥BF;
(2)判断线段DF与CE的大小关系,并予以说明.
12.如图,在边长为2的正方形ABCD中,P为AB的中点,Q为边CD上一动点,设DQ=t(0≤t≤2),线段PQ的垂直平分线分别交边AD、BC于点M、N,过Q作QE⊥AB于点E,过M作MF⊥BC于点F.
(1)当t≠1时,求证:△PEQ≌△NFM;
(2)顺次连接P、M、Q、N,设四边形PMQN的面积为S,求出S与自变量t之间的函数关系式,并求S的最小值.
13.如图,在Rt△ABC中,∠B=90°,AB=1,BC=,以点C为圆心,CB为半径的弧交CA于点D;以点A为圆心,AD为半径的弧交AB于点E.
(1)求AE的长度;
(2)分别以点A、E为圆心,AB长为半径画弧,两弧交于点F(F与C在AB两侧),连接AF、EF,设EF交弧DE所在的圆于点G,连接AG,试猜想∠EAG的大小,并说明理由.
14.如图,OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点,BP的延长线交⊙O于点Q,过点Q的⊙O的切线交OA延长线于点R.
(Ⅰ)求证:RP=RQ;
(Ⅱ)若OP=PA=1,试求PQ的长.
15.如图,在△ABC中,∠ABC=90°,边AC的垂直平分线交BC于点D,交AC于点E,连接BE.
(1)若∠C=30°,求证:BE是△DEC外接圆的切线;
(2)若BE=,BD=1,求△DEC外接圆的直径.
16.如图1,在△ABC中,点D在边BC上,∠ABC:∠ACB:∠ADB=1:2:3,⊙O是△ABD的外接圆.
(1)求证:AC是⊙O的切线;
(2)当BD是⊙O的直径时(如图2),求∠CAD的度数.
17.如图,在平面直角坐标系中,⊙O1的直径OA在x轴上,O1A=2,直线OB交⊙O1于点B,∠BOA=30°,P为经过O、B、A三点的抛物线的顶点.
(1)求点P的坐标;
(2)求证:PB是⊙O1的切线.
18.如图,AB、AC分别是⊙O的直径和弦,OD⊥AC于点D.过点A作⊙O的切线与OD的延长线交于点P,PC、AB的延长线交于点F.
(1)求证:PC是⊙O的切线;
(2)若∠ABC=60°,AB=10,求线段CF的长.
19.如图,在Rt△AOB中,∠AOB=90°,以点O为圆心,OA为半径的圆交AB于点C,点D在边OB上,且CD=BD.
(1)判断直线CD与⊙O的位置关系,并说明理由;
(2)已知tan∠ODC=,AB=40,求⊙O的半径.
20.如图,AB是⊙O的直径,过圆外一点E作EF与⊙O相切于G,交AB的延长线于F,EC⊥AB于点H,交⊙O于D、C两点,连接AG交DC于点K.
(1)求证:EG=EK;
(2)连接AC,若AC∥EF,cos∠ACK=,AK=,求⊙O的半径长.
参考答案
1.解:(1)由图象可知:慢车的速度为:60÷(4﹣3)=60(km/h),
∵两车3小时相遇,此时慢车走的路程为:60×3=180(km),
∴快车的速度为:(480﹣180)÷3=300÷3=100(km/h),
通过图象和快车、慢车两车速度可知快车比慢车先到达终点,
∴慢车到达终点时所用时间为:480÷60=8(h),
∴C点坐标为:(8,480),
故答案为:100,(8,480);
(2)设慢车出发t小时后两车相距200km,
①相遇前两车相距200km,
则:60t+100t+200=480,
解得:t=,
②相遇后两车相距200km,
则:60t+100(t﹣1)﹣480=200,
解得:t=,
∴慢车出发h或h时两车相距200km,
答:慢车出发h或h时两车相距200km.
2.解:(1)把点A(8,1)代入反比例函数y=(x>0)得:
k=1×8=8,y=,
∴k=8;
(2)设直线AB的解析式为:y=kx+b,
根据题意得:,
解得:k=,b=﹣3,
∴直线AB的解析式为:y=x﹣3;
设M(t,),N(t,t﹣3),
则MN=﹣t+3,
∴△BMN的面积S=(﹣t+3)t=﹣t2+t+4=﹣(t﹣3)2+,
∴△BMN的面积S是t的二次函数,
∵﹣<0,
∴S有最大值,
当t=3时,△BMN的面积的最大值为;
(3)∵MA⊥AB,
∴设直线MA的解析式为:y=﹣2x+c,
把点A(8,1)代入得:c=17,
∴直线AM的解析式为:y=﹣2x+17,
解方程组 得: 或 (舍去),
∴M的坐标为(,16),
∴t=.
3.解:(1)根据题意得,y=﹣x+50(0<x≤20);
(2)根据题意得,(40+x)(﹣x+50)=2250,
解得:x1=50,x2=10,
∵每件利润不能超过60元,
∴x=10,
答:当x为10时,超市每天销售这种玩具可获利润2250元;
(3)根据题意得,w=(40+x)(﹣x+50)=﹣x2+30x+2000=﹣(x﹣30)2+2450,
∵a=﹣<0,
∴当x<30时,w随x的增大而增大,
∵40+x≤60,x≤20,
∴当x=20时,w最大=2400,
答:当x为20时w最大,最大值是2400元.
4.解:(1)∵双曲线过点(﹣1,﹣2)
∴k1=﹣1×(﹣2)=2
∵双曲线过点(2,n)
∴n=1
由直线y=k2x+b过点A,B得,解得
∴反比例函数关系式为y=,一次函数关系式为y=x﹣1.
(2)存在符合条件的点P,.
理由如下:∵A(2,1),B(﹣1,﹣2),
∴OA==,AB==3,
∵△APO∽△AOB
∴,
∴AP=,
如图,设直线AB与x轴、y轴分别相交于点C、D,过P点作PE⊥x轴于点E,连接OP,作AF⊥x轴,BG⊥x轴,DH⊥BG.
在直线y=x﹣1中,令x=0,解得:y=﹣1,则D的坐标是:(0,﹣1);
在直线y=x﹣1中,令y=0,解得:x=1,则C的坐标是(1,0);
则CF=OF﹣OC=2﹣1=1,AF=1,在直角△ACF中,AC==,
OC=OD=1,则CD==,
BH=BG﹣GH=2﹣1=1,DH=1,在直角△BDH中,BD==,
则AC=CD=DB=,
故PC=AC﹣AP=,
在直线y=x﹣1中,令x=0,则y=﹣1,则D的坐标是(0,﹣1),OD=1,
令y=0,则x=1,则C的坐标是:(1,0),则OC=1,
则△OCD是等腰直角三角形.
∴∠OCD=45°,
∴∠ACE=∠OCD=45°.
再由∠ACE=45°得CE=PE=,
从而OE=OC+CE=,
点P的坐标为.
5.解:延长PQ交直线AB于点C,
(1)∠BPQ=90°﹣60°=30°;
(2)设PC=x米.
在直角△APC中,∠PAC=45°,
则AC=PC=x米;
∵∠PBC=60°,
∴∠BPC=30°.
在直角△BPC中,BC=PC=x米,
∵AB=AC﹣BC=10(米),
∴x﹣x=10,
解得:x=15+5.
则BC=(5+5)米.
在直角△BCQ中,QC=BC=(5+5)=(5+)米.
∴PQ=PC﹣QC=15+5﹣(5+)=10+≈15.8(米).
答:树PQ的高度约为15.8米.
6.解:(1)在Rt△ABC中,∠BAC=90°,∠C=30°
∵tanC=
∴AB=AC•tanC=9×≈5.2(米)
(2)以点A为圆心,以AB为半径作圆弧,当太阳光线与圆弧相切时树影最长,点D为切点,DE⊥AD交AC于E点,(如图)
在Rt△ADE中,∠ADE=90°,∠E=30°,
∴AE=2AD
=2×5.2=10.4(米)
答:树高AB约为5.2米,树影有最长值,最长值约为10.4米.
7.解:(1)证明:∵AB=AC,
∴∠B=∠C,
∵∠BDE=180°﹣∠B﹣∠DEB,
∠CEF=180°﹣∠DEF﹣∠DEB,
∵∠DEF=∠B,
∴∠BDE=∠CEF,
∴△BDE∽△CEF;
(2)∵△BDE∽△CEF,
∴,
∵点E是BC的中点,
∴BE=CE,
∴,
∵∠DEF=∠B=∠C,
∴△DEF∽△ECF,
∴∠DFE=∠CFE,
∴FE平分∠DFC.
8.(1)证明:由已知,得,
∴△AED≌△CED,
∴∠AED=∠CED,
又∵△AEC为等边三角形,
∴EF⊥AC;
(2)解法一:
过G作GM⊥EF,垂足为M,
由已知和(Ⅰ),得
∠AED=∠CED=30°,∠EAD=15°
∴∠EDG=45°,
∴MD=GM
设GM=x,则DG=
在Rt△MEG中,EG=2MG=2x,
∴EM=
∴ED=+x=()x
∴
即DE=DG(或)
解法二:
过E作EM⊥AD,垂足为M
在Rt△MDE中,
∵∠EDM=∠MED=45°,
∴EM=DM
设EM=DM=x,
则DE=x(6分)
在Rt△AEF中,cot30°=,
∴DF=AF=(7分)
∴AD=
=(8分)
∵△CDG∽△AME,
∴
即
∴DG=(9分)
∴
即(或).(10分)
9.(1)证明:∵∠A=∠ABC=90°,
∴BC∥AD,
∴∠CBE=∠DFE,
在△BEC与△FED中,
,
∴△BEC≌△FED,
∴BE=FE,
又∵E是边CD的中点,
∴CE=DE,
∴四边形BDFC是平行四边形;
(2)①BC=BD=3时,由勾股定理得,AB===2,
所以,四边形BDFC的面积=3×2=6;
②BC=CD=3时,过点C作CG⊥AF于G,则四边形AGCB是矩形,
所以,AG=BC=3,
所以,DG=AG﹣AD=3﹣1=2,
由勾股定理得,CG===,
所以,四边形BDFC的面积=3×=3;
③BD=CD时,BC边上的中线应该与BC垂直,从而得到BC=2AD=2,矛盾,此时不成立;
综上所述,四边形BDFC的面积是6或3.
10.(1)证明:∵∠DBE=∠ABC,
∴∠ABD+∠CBE=∠DBE=∠ABC,
∵△ABE′由△CBE旋转而成,
∴BE=BE′,∠ABE′=∠CBE,
∴∠DBE′=∠DBE,
在△DBE与△DBE′中,
∵,
∴△DBE≌△DBE′(SAS),
∴DE′=DE;
(2)证明:如图所示:把△CBE逆时针旋转90°,连接DE′,
∵BA=BC,∠ABC=90°,
∴∠BAC=∠BCE=45°,
∴图形旋转后点C与点A重合,CE与AE′重合,
∴AE′=EC,
∴∠E′AB=∠BCE=45°,
∴∠DAE′=90°,
在Rt△ADE′中,DE′2=AE′2+AD2,
∵AE′=EC,
∴DE′2=EC2+AD2,
同(1)可得DE=DE′,
∴DE2=AD2+EC2.
11.解:
(1)方法一:如图①,
∵在▱ABCD中,AD∥BC,
∴∠DAB+∠ABC=180°.
∵AE、BF分别平分∠DAB和∠ABC,
∴∠DAB=2∠BAE,∠ABC=2∠ABF.
∴2∠BAE+2∠ABF=180°.
即∠BAE+∠ABF=90°.
∴∠AMB=90°.
∴AE⊥BF.
方法二:如图②,延长BC、AE相交于点P,
∵在▱ABCD中,AD∥BC,
∴∠DAP=∠APB.
∵AE平分∠DAB,
∴∠DAP=∠PAB.
∴∠APB=∠PAB.
∴AB=BP.
∵BF平分∠ABP,
∴AP⊥BF,
即AE⊥BF.
(2)方法一:线段DF与CE是相等关系,即DF=CE,
∵在▱ABCD中,CD∥AB,
∴∠DEA=∠EAB.
又∵AE平分∠DAB,
∴∠DAE=∠EAB.
∴∠DEA=∠DAE.
∴DE=AD.
同理可得,CF=BC.
又∵在▱ABCD中,AD=BC,
∴DE=CF.
∴DE﹣EF=CF﹣EF.
即DF=CE.
方法二:如图,延长BC、AE设交于点P,延长AD、BF相交于点O,
∵在▱ABCD中,AD∥BC,
∴∠DAP=∠APB.
∵AE平分∠DAB,
∴∠DAP=∠PAB.
∴∠APB=∠PAB.
∴BP=AB.
同理可得,AO=AB.
∴AO=BP.
∵在▱ABCD中,AD=BC,
∴OD=PC.
又∵在▱ABCD中,DC∥AB,
∴△ODF∽△OAB,△PCE∽△PBA.
∴=,=.
∴DF=CE.(8分)
12.(1)证明:∵四边形ABCD是正方形,
∴∠A=∠B=∠D=90°,AD=AB,
∵QE⊥AB,MF⊥BC,
∴∠AEQ=∠MFB=90°,
∴四边形ABFM、AEQD都是矩形,
∴MF=AB,QE=AD,MF⊥QE,
又∵PQ⊥MN,
∴∠1+∠EQP=90°,∠2+∠FMN=90°,
∵∠1=∠2,
∴∠EQP=∠FMN,
又∵∠QEP=∠MFN=90°,
∴△PEQ≌△NFM;
(2)解:分为两种情况:①当E在AP上时,
∵点P是边AB的中点,AB=2,DQ=AE=t,
∴PA=1,PE=1﹣t,QE=2,
由勾股定理,得PQ==,
∵△PEQ≌△NFM,
∴MN=PQ=,
又∵PQ⊥MN,
∴S===t2﹣t+,
∵0≤t≤2,
∴当t=1时,S最小值=2.
②当E在BP上时,
∵点P是边AB的中点,AB=2,DQ=AE=t,
∴PA=1,PE=t﹣1,QE=2,
由勾股定理,得PQ==,
∵△PEQ≌△NFM,
∴MN=PQ=,
又∵PQ⊥MN,
∴S==[(t﹣1)2+4]=t2﹣t+,
∵0≤t≤2,
∴当t=1时,S最小值=2.
综上:S=t2﹣t+,S的最小值为2.
13.解:(1)在Rt△ABC中,由AB=1,BC=,
得AC==,
∵以点C为圆心,CB为半径的弧交CA于点D;以点A为圆心,AD为半径的弧交AB于点E
∴BC=CD,AE=AD,
∴AE=AC﹣CD=;
(2)∠EAG=36°,理由如下:
∵FA=FE=AB=1,AE=,
∴=,
∴△FAE是黄金三角形,
∴∠F=36°,∠AEF=72°,
∵AE=AG,
∴∠EAG=∠F=36°.
14.(Ⅰ)证法一:
连接OQ;
∵RQ是⊙O的切线,
∴∠OQB+∠BQR=90°.
∵OA⊥OB,
∴∠OPB+∠B=90°.
又∵OB=OQ,
∴∠OQB=∠B.
∴∠PQR=∠BPO=∠RPQ.
∴RP=RQ.
证法二:
作直径BC,连接CQ;∵BC是⊙O的直径,
∴∠B+∠C=90°.
∵OA⊥OB,
∴∠B+∠BPO=90°.
∴∠C=∠BPO.
又∠BPO=∠RPQ,
∴∠C=∠RPQ.
又∵RQ为⊙O的切线,
∴∠PQR=∠C.
∴∠PQR=∠RPQ.
∴RP=RQ.
(Ⅱ)解法一:
作直径AC,
∵OP=PA=1,
∴PC=3.
由勾股定理,得BP==
由相交弦定理,得PQ•PB=PA•PC.
即PQ×=1×3,
∴PQ=.
解法二:
作直径AE,过R作RF⊥BQ,垂足为F,
设RQ=RP=x;
由切割线定理,得:x2=(x﹣1),(x+3)
解得:x=,
又由△BPO∽△RPF得:,
∴PF=,
由等腰三角形性质得:PQ=2PF=.
15.(1)证明:∵DE垂直平分AC,
∴∠DEC=90°,AE=CE,
∴DC为△DEC外接圆的直径,
取DC的中点O,连接OE,如图,
∵∠ABC=90°,
∴BE为Rt△ABC斜边上的中线,
∴EB=EC,
∵∠C=30°,
∴∠EBC=30°,∠EOD=2∠C=60°,
∴∠BEO=90°,
∴OE⊥BE,
而OE为⊙O的半径,
∴BE是△DEC外接圆的切线;
(2)解:∵BE为Rt△ABC斜边上的中线,
∴AE=EC=BE=,
∴AC=2,
∵∠ECD=∠BCA,
∴Rt△CED∽Rt△CBA,
∴=,
而CB=CD+BD=CD+1,
∴=,
解得CD=2或CD=﹣3(舍去),
∴△DEC外接圆的直径为2.
16.(1)证明:连接AO,延长AO交⊙O于点E,则AE为⊙O的直径,连接DE,如图所示:
∵∠ABC:∠ACB:∠ADB=1:2:3,∠ADB=∠ACB+∠CAD,
∴∠ABC=∠CAD,
∵AE为⊙O的直径,
∴∠ADE=90°,
∴∠EAD=90°﹣∠AED,
∵∠AED=∠ABD,
∴∠AED=∠ABC=∠CAD,
∴∠EAD=90°﹣∠CAD,
即∠EAD+∠CAD=90°,
∴EA⊥AC,
∴AC是⊙O的切线;
(2)解:∵BD是⊙O的直径,
∴∠BAD=90°,
∴∠ABC+∠ADB=90°,
∵∠ABC:∠ACB:∠ADB=1:2:3,
∴4∠ABC=90°,
∴∠ABC=22.5°,
由(1)知:∠ABC=∠CAD,
∴∠CAD=22.5°.
17.(1)解:如图,
连接O1B,过点B作BC⊥x轴于点C
∵∠BOA=30°,半径O1A=2,
∴∠BO1C=60°,O1C=1,BC=
∴点B坐标为(3,).
设过O(0,0),A(4,0)两点抛物线解析式为y=ax(x﹣4),
∵点B(3,)在抛物线上,
∴=a×3×(3﹣4),
∴a=﹣,
∴抛物线的解析式为y=﹣x2+x,
∴顶点P的坐标为(2,).
(2)证明:设过P(2,)、B(3,)两点直线的解析式为y=kx+b,
则,
∴直线的解析式为y=﹣x+2,
令y=0,则x=6,
∴直线PB与x轴的交点坐标为D(6,0),
∴OD=6,CD=3,O1D=3+1=4,
∵OB=2
∴BD=2,
∴O1B2+BD2=22+(2)2=16=O1D2
∴O1B2+BD2=O1D2
∴O1B⊥BD,
即PB是⊙O1的切线.
18.解:(1)连接OC,
∵OD⊥AC,OD经过圆心O,
∴AD=CD,
∴PA=PC,
在△OAP和△OCP中,
∵,
∴△OAP≌△OCP(SSS),
∴∠OCP=∠OAP
∵PA是⊙O的切线,
∴∠OAP=90°.
∴∠OCP=90°,
即OC⊥PC
∴PC是⊙O的切线.
(2)∵OB=OC,∠OBC=60°,
∴△OBC是等边三角形,
∴∠COB=60°,
∵AB=10,
∴OC=5,
由(1)知∠OCF=90°,
∴CF=OCtan∠COB=5.
19.解:(1)直线CD与⊙O相切,
理由如下:如图,连接OC,
∵OA=OC,CD=BD,
∴∠A=∠ACO,∠B=∠DCB,
∵∠AOB=90°,
∴∠A+∠B=90°,
∴∠ACO+∠DCB=90°,
∴∠OCD=90°,
∴OC⊥CD,
又∵OC为半径,
∴CD是⊙O的切线,
∴直线CD与⊙O相切;
(2)∵tan∠ODC==,
∴设CD=7x=DB,OC=24x=OA,
∵∠OCD=90°,
∴OD===25x,
∴OB=32x,
∵∠AOB=90°,
∴AB2=AO2+OB2,
∴1600=576x2+1024x2,
∴x=1,
∴OA=OC=24,
∴⊙O的半径为24.
20.证明:(1)∵EF与⊙O相切于G,
∴OG⊥EG,
∴∠EGO=90°,
∴∠EGA+∠AGO=90°,
∵AO=GO,
∴∠OAG=∠OGA,
∵EC⊥AB
∴∠OAG+∠AKC=90°,
∴∠EGA=∠AKC=∠EKG,
∴EG=EK;
(2)如图,
∵cos∠ACK==,
∴设CA=5a,CH=4a,
∴AH===3a,
∵AC∥EF,
∴∠EGK=∠CAK=∠AKC,
∴AC=CK=5a,
∴HK=5a﹣4a=a,
∵AK2=AH2+KH2,
∴10=10a2,
∴a=1,
∴AH=3,CH=4,
∵CO2=HO2+CH2,
∴CO2=(CO﹣3)2+16,
∴CO=,
∴⊙O的半径长.
相关试卷
这是一份2023年 九年级数学中考复习压轴题常考题型专题提升训练附答案,共54页。试卷主要包含了已知,如图1,问题提出等内容,欢迎下载使用。
这是一份2023年中考数学专题复习《圆综合压轴题》解答题专题提升训练+,共33页。试卷主要包含了已知,如图,在△ABC中,AB=AC等内容,欢迎下载使用。
这是一份山东省烟台市2022年九年级数学中考复习《填空题常考热点》中档题专题提升训练,共13页。试卷主要包含了已知2= 等内容,欢迎下载使用。