|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021-2022学年广东省广州市花都区重点名校中考三模数学试题含解析
    立即下载
    加入资料篮
    2021-2022学年广东省广州市花都区重点名校中考三模数学试题含解析01
    2021-2022学年广东省广州市花都区重点名校中考三模数学试题含解析02
    2021-2022学年广东省广州市花都区重点名校中考三模数学试题含解析03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年广东省广州市花都区重点名校中考三模数学试题含解析

    展开
    这是一份2021-2022学年广东省广州市花都区重点名校中考三模数学试题含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,如图,已知直线l1,已知抛物线c等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.若等式(-5)□5=–1成立,则□内的运算符号为( )
    A.+ B.– C.× D.÷
    2.如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(﹣1,1),点B在x轴正半轴上,点D在第三象限的双曲线上,过点C作CE∥x轴交双曲线于点E,连接BE,则△BCE的面积为(  )

    A.5 B.6 C.7 D.8
    3.苹果的单价为a元/千克,香蕉的单价为b元/千克,买2千克苹果和3千克香蕉共需(  )
    A.(a+b)元 B.(3a+2b)元 C.(2a+3b)元 D.5(a+b)元
    4.某种电子元件的面积大约为0.00000069平方毫米,将0.00000069这个数用科学记数法表示正确的是(  )
    A.0.69×10﹣6 B.6.9×10﹣7 C.69×10﹣8 D.6.9×107
    5.已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为(  )

    A.20° B.30° C.45° D.50°
    6.如图,已知直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(﹣2,0),则k的取值范围是(  )

    A.﹣2<k<2 B.﹣2<k<0 C.0<k<4 D.0<k<2
    7.安徽省2010年末森林面积为3804.2千公顷,用科学记数法表示3804.2千正确的是(  )
    A.3804.2×103 B.380.42×104 C.3.8042×106 D.3.8042×105
    8.如图是由长方体和圆柱组成的几何体,它的俯视图是(  )

    A. B. C. D.
    9.我国的钓鱼岛面积约为4400000m2,用科学记数法表示为(  )
    A.4.4×106 B.44×105 C.4×106 D.0.44×107
    10.已知抛物线c:y=x2+2x﹣3,将抛物线c平移得到抛物线c′,如果两条抛物线,关于直线x=1对称,那么下列说法正确的是(  )
    A.将抛物线c沿x轴向右平移个单位得到抛物线c′ B.将抛物线c沿x轴向右平移4个单位得到抛物线c′
    C.将抛物线c沿x轴向右平移个单位得到抛物线c′ D.将抛物线c沿x轴向右平移6个单位得到抛物线c′
    二、填空题(共7小题,每小题3分,满分21分)
    11.一个圆锥的高为3,侧面展开图是半圆,则圆锥的侧面积是_________
    12.Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是_____.
    13.化简的结果为_____.
    14.如图,四边形ABCD中,点P是对角线BD的中点,点E,F分别是AB,CD的中点,AD=BC,∠PEF=35°,则∠PFE的度数是_____.

    15.从﹣2,﹣1,2这三个数中任取两个不同的数相乘,积为正数的概率是_____.
    16.函数y=的自变量x的取值范围是_____.
    17.已知,如图,正方形ABCD的边长是8,M在DC上,且DM=2,N是AC边上的一动点,则DN+MN的最小值是_____.

    三、解答题(共7小题,满分69分)
    18.(10分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE,求证:∠DAE=∠ECD.

    19.(5分)如图,在Rt△ABC中,,点在边上,⊥,点为垂足,,∠DAB=450,tanB=.
    (1)求的长;
    (2)求的余弦值.

    20.(8分)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.
    (1)观察猜想
    图1中,线段PM与PN的数量关系是   ,位置关系是   ;
    (2)探究证明
    把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;
    (3)拓展延伸
    把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.

    21.(10分)已知:如图,在Rt△ABO中,∠B=90°,∠OAB=10°,OA=1.以点O为原点,斜边OA所在直线为x轴,建立平面直角坐标系,以点P(4,0)为圆心,PA长为半径画圆,⊙P与x轴的另一交点为N,点M在⊙P上,且满足∠MPN=60°.⊙P以每秒1个单位长度的速度沿x轴向左运动,设运动时间为ts,解答下列问题:
    (发现)(1)的长度为多少;
    (2)当t=2s时,求扇形MPN(阴影部分)与Rt△ABO重叠部分的面积.
    (探究)当⊙P和△ABO的边所在的直线相切时,求点P的坐标.
    (拓展)当与Rt△ABO的边有两个交点时,请你直接写出t的取值范围.

    22.(10分)先化简代数式,再从﹣1,0,3中选择一个合适的a的值代入求值.
    23.(12分)如图,某市郊外景区内一条笔直的公路a经过三个景点A、B、C,景区管委会又开发了风景优美的景点D,经测量,景点D位于景点A的北偏东30′方向8km处,位于景点B的正北方向,还位于景点C的北偏西75°方向上,已知AB=5km.景区管委会准备由景点D向公路a修建一条距离最短的公路,不考试其他因素,求出这条公路的长.(结果精确到0.1km).求景点C与景点D之间的距离.(结果精确到1km).

    24.(14分)如图,在中,,点是上一点.尺规作图:作,使与、都相切.(不写作法与证明,保留作图痕迹)若与相切于点D,与的另一个交点为点,连接、,求证:.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    根据有理数的除法可以解答本题.
    【详解】
    解:∵(﹣5)÷5=﹣1,
    ∴等式(﹣5)□5=﹣1成立,则□内的运算符号为÷,
    故选D.
    【点睛】
    考查有理数的混合运算,解答本题的关键是明确有理数的混合运算的计算方法.
    2、C
    【解析】
    作辅助线,构建全等三角形:过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,证明△AGD≌△DHC≌△CMB,根据点D的坐标表示:AG=DH=-x-1,由DG=BM,列方程可得x的值,表示D和E的坐标,根据三角形面积公式可得结论.
    【详解】
    解:过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,
    设D(x,),
    ∵四边形ABCD是正方形,
    ∴AD=CD=BC,∠ADC=∠DCB=90°,
    易得△AGD≌△DHC≌△CMB(AAS),
    ∴AG=DH=﹣x﹣1,
    ∴DG=BM,
    ∵GQ=1,DQ=﹣,DH=AG=﹣x﹣1,
    由QG+DQ=BM=DQ+DH得:1﹣=﹣1﹣x﹣,
    解得x=﹣2,
    ∴D(﹣2,﹣3),CH=DG=BM=1﹣=4,
    ∵AG=DH=﹣1﹣x=1,
    ∴点E的纵坐标为﹣4,
    当y=﹣4时,x=﹣,
    ∴E(﹣,﹣4),
    ∴EH=2﹣=,
    ∴CE=CH﹣HE=4﹣=,
    ∴S△CEB=CE•BM=××4=7;

    故选C.
    【点睛】
    考查正方形的性质、全等三角形的判定和性质、反比例函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会构建方程解决问题.
    3、C
    【解析】
    用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.
    【详解】
    买单价为a元的苹果2千克用去2a元,买单价为b元的香蕉3千克用去3b元,
    共用去:(2a+3b)元.
    故选C.
    【点睛】
    本题主要考查列代数式,总价=单价乘数量.
    4、B
    【解析】
    试题解析:0.00 000 069=6.9×10-7,
    故选B.
    点睛:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    5、D
    【解析】
    根据两直线平行,内错角相等计算即可.
    【详解】
    因为m∥n,所以∠2=∠1+30°,所以∠2=30°+20°=50°,故选D.
    【点睛】
    本题主要考查平行线的性质,清楚两直线平行,内错角相等是解答本题的关键.
    6、D
    【解析】
    解:∵直线l1与x轴的交点为A(﹣1,0),
    ∴﹣1k+b=0,∴,解得:.
    ∵直线l1:y=﹣1x+4与直线l1:y=kx+b(k≠0)的交点在第一象限,
    ∴,
    解得0<k<1.
    故选D.
    【点睛】
    两条直线相交或平行问题;一次函数图象上点的坐标特征.
    7、C
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.
    【详解】
    ∵3804.2千=3804200,
    ∴3804200=3.8042×106;
    故选:C.
    【点睛】
    本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    8、A
    【解析】
    分析:根据从上边看得到的图形是俯视图,可得答案.
    详解:从上边看外面是正方形,里面是没有圆心的圆,
    故选A.
    点睛:本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.
    9、A
    【解析】4400000=4.4×1.故选A.
    点睛:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    10、B
    【解析】
    ∵抛物线C:y=x2+2x﹣3=(x+1)2﹣4,
    ∴抛物线对称轴为x=﹣1.
    ∴抛物线与y轴的交点为A(0,﹣3).
    则与A点以对称轴对称的点是B(2,﹣3).
    若将抛物线C平移到C′,并且C,C′关于直线x=1对称,就是要将B点平移后以对称轴x=1与A点对称.
    则B点平移后坐标应为(4,﹣3),
    因此将抛物线C向右平移4个单位.
    故选B.

    二、填空题(共7小题,每小题3分,满分21分)
    11、18π
    【解析】解:设圆锥的半径为 ,母线长为 .则

    解得

    12、3.1或4.32或4.2
    【解析】
    【分析】在Rt△ABC中,通过解直角三角形可得出AC=5、S△ABC=1,找出所有可能的分割方法,并求出剪出的等腰三角形的面积即可.
    【详解】在Rt△ABC中,∠ACB=90°,AB=3,BC=4,
    ∴AB==5,S△ABC=AB•BC=1.
    沿过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,有三种情况:
    ①当AB=AP=3时,如图1所示,
    S等腰△ABP=•S△ABC=×1=3.1;
    ②当AB=BP=3,且P在AC上时,如图2所示,
    作△ABC的高BD,则BD=,
    ∴AD=DP==1.2,
    ∴AP=2AD=3.1,
    ∴S等腰△ABP=•S△ABC=×1=4.32;
    ③当CB=CP=4时,如图3所示,
    S等腰△BCP=•S△ABC=×1=4.2;
    综上所述:等腰三角形的面积可能为3.1或4.32或4.2,
    故答案为:3.1或4.32或4.2.

    【点睛】本题考查了勾股定理、等腰三角形的性质以及三角形的面积,找出所有可能的分割方法,并求出剪出的等腰三角形的面积是解题的关键.
    13、+1
    【解析】
    利用积的乘方得到原式=[(﹣1)(+1)]2017•(+1),然后利用平方差公式计算.
    【详解】
    原式=[(﹣1)(+1)]2017•(+1)=(2﹣1)2017•(+1)=+1.
    故答案为:+1.
    【点睛】
    本题考查了二次根式的混合运算,在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
    14、35°
    【解析】
    ∵四边形ABCD中,点P是对角线BD的中点,点E,F分别是AB,CD的中点,
    ∴PE是△ABD的中位线,PF是△BDC的中位线,
    ∴PE=AD,PF=BC,
    又∵AD=BC,
    ∴PE=PF,
    ∴∠PFE=∠PEF=35°.
    故答案为35°.
    15、
    【解析】
    首先根据题意列出表格,然后由表格即可求得所有等可能的结果与积为正数的情况,再利用概率公式求解即可求得答案.
    【详解】
    列表如下:

    ﹣2
    ﹣1
    2
    ﹣2

    2
    ﹣4
    ﹣1
    2

    ﹣2
    2
    ﹣4
    ﹣2

    由表可知,共有6种等可能结果,其中积为正数的有2种结果,
    所以积为正数的概率为,
    故答案为.
    【点睛】
    本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.
    16、x≠﹣1
    【解析】
    根据分母不等于2列式计算即可得解.
    【详解】
    解:根据题意得x+1≠2,
    解得x≠﹣1.
    故答案为:x≠﹣1.
    【点睛】
    考查的知识点为:分式有意义,分母不为2.
    17、1
    【解析】
    分析:要求DN+MN的最小值,DN,MN不能直接求,可考虑通过作辅助线转化DN,MN的值,从而找出其最小值求解.
    解答:

    解:如图,连接BM,
    ∵点B和点D关于直线AC对称,∴NB=ND,则BM就是DN+MN的最小值,∵正方形ABCD的边长是8,DM=2,∴CM=6,∴BM==1,∴DN+MN的最小值是1.
    故答案为1.
    点评:考查正方形的性质和轴对称及勾股定理等知识的综合应用.

    三、解答题(共7小题,满分69分)
    18、见解析,
    【解析】
    要证∠DAE=∠ECD.需先证△ADF≌△CEF,由折叠得BC=EC,∠B=∠AEC,由矩形得BC=AD,∠B=∠ADC=90°,再根据等量代换和对顶角相等可以证出,得出结论.
    【详解】
    证明:由折叠得:BC=EC,∠B=∠AEC,
    ∵矩形ABCD,
    ∴BC=AD,∠B=∠ADC=90°,
    ∴EC=DA,∠AEC=∠ADC=90°,
    又∵∠AFD=∠CFE,
    ∴△ADF≌△CEF (AAS)
    ∴∠DAE=∠ECD.
    【点睛】
    本题考查折叠的性质、矩形的性质、全等三角形的性质和判定等知识,借助于三角形全等证明线段相等和角相等是常用的方法.
    19、 (1)3;(2)
    【解析】
    分析:(1)由题意得到三角形ADE为等腰直角三角形,在直角三角形DEB中,利用锐角三角函数定义求出DE与BE之比,设出DE与BE,由AB=7求出各自的值,确定出DE即可;
    (2)在直角三角形中,利用勾股定理求出AD与BD的长,根据tanB的值求出cosB的值,确定出BC的长,由BC﹣BD求出CD的长,利用锐角三角函数定义求出所求即可.
    详解:(1)∵DE⊥AB,∴∠DEA=90°.又∵∠DAB=41°,∴DE=AE.在Rt△DEB中,∠DEB=90°,tanB==,设DE=3x,那么AE=3x,BE=4x.∵AB=7,∴3x+4x=7,解得:x=1,∴DE=3;
    (2)在Rt△ADE中,由勾股定理,得:AD=3,同理得:BD=1.在Rt△ABC中,由tanB=,可得:cosB=,∴BC=,∴CD=,∴cos∠CDA==,即∠CDA的余弦值为.
    点睛:本题考查了解直角三角形,涉及的知识有:锐角三角函数定义,勾股定理,等腰直角三角形的判定与性质,熟练掌握各自的性质是解答本题的关键.
    20、 (1)PM=PN, PM⊥PN;(2)△PMN是等腰直角三角形,理由详见解析;(3).
    【解析】
    (1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论,再利用三角形的中位线得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出结论;
    (2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出结论;
    (3)方法1、先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.
    方法2、先判断出BD最大时,△PMN的面积最大,而BD最大是AB+AD=14,即可.
    【详解】
    解:(1)∵点P,N是BC,CD的中点,
    ∴PN∥BD,PN=BD,
    ∵点P,M是CD,DE的中点,
    ∴PM∥CE,PM=CE,
    ∵AB=AC,AD=AE,
    ∴BD=CE,
    ∴PM=PN,
    ∵PN∥BD,
    ∴∠DPN=∠ADC,
    ∵PM∥CE,
    ∴∠DPM=∠DCA,
    ∵∠BAC=90°,
    ∴∠ADC+∠ACD=90°,
    ∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,
    ∴PM⊥PN,
    故答案为:PM=PN,PM⊥PN,
    (2)由旋转知,∠BAD=∠CAE,
    ∵AB=AC,AD=AE,
    ∴△ABD≌△ACE(SAS),
    ∴∠ABD=∠ACE,BD=CE,
    同(1)的方法,利用三角形的中位线得,PN=BD,PM=CE,
    ∴PM=PN,
    ∴△PMN是等腰三角形,
    同(1)的方法得,PM∥CE,
    ∴∠DPM=∠DCE,
    同(1)的方法得,PN∥BD,
    ∴∠PNC=∠DBC,
    ∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,
    ∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC
    =∠BCE+∠DBC=∠ACB+∠ACE+∠DBC
    =∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,
    ∵∠BAC=90°,
    ∴∠ACB+∠ABC=90°,
    ∴∠MPN=90°,
    ∴△PMN是等腰直角三角形,
    (3)方法1、如图2,同(2)的方法得,△PMN是等腰直角三角形,
    ∴MN最大时,△PMN的面积最大,
    ∴DE∥BC且DE在顶点A上面,
    ∴MN最大=AM+AN,
    连接AM,AN,
    在△ADE中,AD=AE=4,∠DAE=90°,
    ∴AM=2,
    在Rt△ABC中,AB=AC=10,AN=5,
    ∴MN最大=2+5=7,
    ∴S△PMN最大=PM2=×MN2=×(7)2=.
    方法2、由(2)知,△PMN是等腰直角三角形,PM=PN=BD,
    ∴PM最大时,△PMN面积最大,
    ∴点D在BA的延长线上,
    ∴BD=AB+AD=14,
    ∴PM=7,
    ∴S△PMN最大=PM2=×72=

    【点睛】
    本题考查旋转中的三角形,关键在于对三角形的所有知识点熟练掌握.
    21、【发现】(3)的长度为;(2)重叠部分的面积为;【探究】:点P的坐标为;或或;【拓展】t的取值范围是或,理由见解析.
    【解析】
    发现:(3)先确定出扇形半径,进而用弧长公式即可得出结论;
    (2)先求出PA=3,进而求出PQ,即可用面积公式得出结论;
    探究:分圆和直线AB和直线OB相切,利用三角函数即可得出结论;
    拓展:先找出和直角三角形的两边有两个交点时的分界点,即可得出结论.
    【详解】
    [发现]
    (3)∵P(2,0),∴OP=2.
    ∵OA=3,∴AP=3,∴的长度为.
    故答案为;
    (2)设⊙P半径为r,则有r=2﹣3=3,当t=2时,如图3,点N与点A重合,∴PA=r=3,设MP与AB相交于点Q.在Rt△ABO中,∵∠OAB=30°,∠MPN=60°.
    ∵∠PQA=90°,∴PQPA,∴AQ=AP×cos30°,∴S重叠部分=S△APQPQ×AQ.
    即重叠部分的面积为.
    [探究]
    ①如图2,当⊙P与直线AB相切于点C时,连接PC,则有PC⊥AB,PC=r=3.
    ∵∠OAB=30°,∴AP=2,∴OP=OA﹣AP=3﹣2=3;
    ∴点P的坐标为(3,0);

    ②如图3,当⊙P与直线OB相切于点D时,连接PD,则有PD⊥OB,PD=r=3,∴PD∥AB,∴∠OPD=∠OAB=30°,∴cos∠OPD,∴OP,∴点P的坐标为(,0);
    ③如图2,当⊙P与直线OB相切于点E时,连接PE,则有PE⊥OB,同②可得:OP;
    ∴点P的坐标为(,0);

    [拓展]
    t的取值范围是2<t≤3,2≤t<4,理由:
    如图4,当点N运动到与点A重合时,与Rt△ABO的边有一个公共点,此时t=2;
    当t>2,直到⊙P运动到与AB相切时,由探究①得:OP=3,∴t3,与Rt△ABO的边有两个公共点,∴2<t≤3.
    如图6,当⊙P运动到PM与OB重合时,与Rt△ABO的边有两个公共点,此时t=2;
    直到⊙P运动到点N与点O重合时,与Rt△ABO的边有一个公共点,此时t=4;
    ∴2≤t<4,即:t的取值范围是2<t≤3,2≤t<4.

    【点睛】
    本题是圆的综合题,主要考查了弧长公式,切线的性质,锐角三角函数,三角形面积公式,作出图形是解答本题的关键.
    22、,1
    【解析】
    先通分得到,再根据平方差公式和完全平方公式得到,化简后代入a=3,计算即可得到答案.
    【详解】
    原式===,
    当a=3时(a≠﹣1,0),原式=1.
    【点睛】
    本题考查代数式的化简、平方差公式和完全平方公式,解题的关键是掌握代数式的化简、平方差公式和完全平方公式.
    23、(1)景点D向公路a修建的这条公路的长约是3.1km;(2)景点C与景点D之间的距离约为4km.
    【解析】
    解:(1)如图,过点D作DE⊥AC于点E,
    过点A作AF⊥DB,交DB的延长线于点F,在Rt△DAF中,∠ADF=30°,
    ∴AF=AD=×8=4,∴DF=,
    在Rt△ABF中BF==3,
    ∴BD=DF﹣BF=4﹣3,sin∠ABF=,
    在Rt△DBE中,sin∠DBE=,∵∠ABF=∠DBE,∴sin∠DBE=,
    ∴DE=BD•sin∠DBE=×(4﹣3)=≈3.1(km),

    ∴景点D向公路a修建的这条公路的长约是3.1km;
    (2)由题意可知∠CDB=75°,
    由(1)可知sin∠DBE==0.8,所以∠DBE=53°,
    ∴∠DCB=180°﹣75°﹣53°=52°,
    在Rt△DCE中,sin∠DCE=,∴DC=≈4(km),
    ∴景点C与景点D之间的距离约为4km.
    24、(1)详见解析;(2)详见解析.
    【解析】
    (1)利用角平分线的性质作出∠BAC的角平分线,利用角平分线上的点到角的两边距离相等得出O点位置,进而得出答案.
    (2)根据切线的性质,圆周角的性质,由相似判定可证△CDB∽△DEB,再根据相似三角形的性质即可求解.
    【详解】
    解:(1)如图,及为所求.

    (2)连接.
    ∵是的切线,
    ∴,
    ∴,
    即,
    ∵是直径,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,

    ∴∽

    ∴.
    【点睛】
    本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作是解决此类题目的关键.

    相关试卷

    2023年广东省广州市花都区中考数学二模试卷(含解析): 这是一份2023年广东省广州市花都区中考数学二模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    广东省广州市名校联盟重点名校2021-2022学年中考联考数学试题含解析: 这是一份广东省广州市名校联盟重点名校2021-2022学年中考联考数学试题含解析,共19页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。

    广州市花都区花山重点达标名校2021-2022学年中考数学全真模拟试卷含解析: 这是一份广州市花都区花山重点达标名校2021-2022学年中考数学全真模拟试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,的相反数是,估计﹣1的值为等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map