年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年广东省揭阳市榕城区一中学初中数学毕业考试模拟冲刺卷含解析

    2021-2022学年广东省揭阳市榕城区一中学初中数学毕业考试模拟冲刺卷含解析第1页
    2021-2022学年广东省揭阳市榕城区一中学初中数学毕业考试模拟冲刺卷含解析第2页
    2021-2022学年广东省揭阳市榕城区一中学初中数学毕业考试模拟冲刺卷含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年广东省揭阳市榕城区一中学初中数学毕业考试模拟冲刺卷含解析

    展开

    这是一份2021-2022学年广东省揭阳市榕城区一中学初中数学毕业考试模拟冲刺卷含解析,共21页。试卷主要包含了一、单选题等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.用五个完全相同的小正方体组成如图所示的立体图形,从正面看到的图形是(  )

    A. B. C. D.
    2.已知,下列说法中,不正确的是( )
    A. B.与方向相同
    C. D.
    3.下列说法中,正确的是(  )
    A.长度相等的弧是等弧
    B.平分弦的直径垂直于弦,并且平分弦所对的两条弧
    C.经过半径并且垂直于这条半径的直线是圆的切线
    D.在同圆或等圆中90°的圆周角所对的弦是这个圆的直径
    4.已知二次函数y=﹣(x﹣h)2+1(为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最大值为﹣5,则h的值为( )
    A.3﹣或1+ B.3﹣或3+
    C.3+或1﹣ D.1﹣或1+
    5.下列各式中,不是多项式2x2﹣4x+2的因式的是(  )
    A.2 B.2(x﹣1) C.(x﹣1)2 D.2(x﹣2)
    6.一、单选题
    如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=(  )

    A.75° B.80° C.85° D.90°
    7.若关于x、y的方程组有实数解,则实数k的取值范围是(  )
    A.k>4 B.k<4 C.k≤4 D.k≥4
    8.如图,在平面直角坐标系xOy中,点C,B,E在y轴上,Rt△ABC经过变化得到Rt△EDO,若点B的坐标为(0,1),OD=2,则这种变化可以是( )

    A.△ABC绕点C顺时针旋转90°,再向下平移5个单位长度
    B.△ABC绕点C逆时针旋转90°,再向下平移5个单位长度
    C.△ABC绕点O顺时针旋转90°,再向左平移3个单位长度
    D.△ABC绕点O逆时针旋转90°,再向右平移1个单位长度
    9.已知关于x的一元二次方程有实数根,则m的取值范围是( )
    A. B. C. D.
    10.如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为( )

    A.30° B.36° C.54° D.72°
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.抛物线y=x2+2x+m﹣1与x轴有交点,则m的取值范围是_____.
    12.如图,扇形的半径为,圆心角为120°,用这个扇形围成一个圆锥的侧面,所得的圆锥的高为 ______ .

    13.不等式组的解集为_____.
    14.一元二次方程2x2﹣3x﹣4=0根的判别式的值等于_____.
    15.数据:2,5,4,2,2的中位数是_____,众数是_____,方差是_____.
    16.如图所示,过y轴正半轴上的任意一点P,作x轴的平行线,分别与反比例函数的图象交于点A和点B,若点C是x轴上任意一点,连接AC、BC,则△ABC的面积为_________.
    三、解答题(共8题,共72分)
    17.(8分)如图,点P是⊙O外一点,请你用尺规画出一条直线PA,使得其与⊙O相切于点A,(不写作法,保留作图痕迹)

    18.(8分)如图,在矩形ABCD中,E是BC边上的点,,垂足为F.

    (1)求证:;
    (2)如果,求的余切值.
    19.(8分)黄岩某校搬迁后,需要增加教师和学生的寝室数量,寝室有三类,分别为单人间(供一个人住宿),双人间(供两个人住宿),四人间(供四个人住宿).因实际需要,单人间的数量在20至30之间(包括20和30),且四人间的数量是双人间的5倍.
    (1)若2018年学校寝室数为64个,以后逐年增加,预计2020年寝室数达到121个,求2018至2020年寝室数量的年平均增长率;
    (2)若三类不同的寝室的总数为121个,则最多可供多少师生住宿?
    20.(8分)如图,在△ABC中,以AB为直径的⊙O交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,且DH是⊙O的切线,连接DE交AB于点F.
    (1)求证:DC=DE;
    (2)若AE=1,,求⊙O的半径.

    21.(8分) “六一”儿童节前夕,某县教育局准备给留守儿童赠送一批学习用品,先对红星小学的留守儿童人数进行抽样统计,发现各班留守儿童人数分别为6名,7名,8名,10名,12名这五种情形,并绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:

    (1)该校有_____个班级,补全条形统计图;
    (2)求该校各班留守儿童人数数据的平均数,众数与中位数;
    (3)若该镇所有小学共有60个教学班,请根据样本数据,估计该镇小学生中,共有多少名留守儿童.
    22.(10分)△ABC中,AB=AC,D为BC的中点,以D为顶点作∠MDN=∠B.
    如图(1)当射线DN经过点A时,DM交AC边于点E,不添加辅助线,写出图中所有与△ADE相似的三角形.如图(2),将∠MDN绕点D沿逆时针方向旋转,DM,DN分别交线段AC,AB于E,F点(点E与点A不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论.在图(2)中,若AB=AC=10,BC=12,当△DEF的面积等于△ABC的面积的时,求线段EF的长.
    23.(12分)如图,M是平行四边形ABCD的对角线上的一点,射线AM与BC交于点F,与DC的延长线交于点H.
    (1)求证:AM2=MF.MH
    (2)若BC2=BD.DM,求证:∠AMB=∠ADC.

    24.如图,∠AOB=45°,点M,N在边OA上,点P是边OB上的点.
    (1)利用直尺和圆规在图1确定点P,使得PM=PN;
    (2)设OM=x,ON=x+4,
    ①若x=0时,使P、M、N构成等腰三角形的点P有  个;
    ②若使P、M、N构成等腰三角形的点P恰好有三个,则x的值是____________.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】
    从正面看第一层是三个小正方形,第二层左边一个小正方形,
    故选:A.
    2、A
    【解析】
    根据平行向量以及模的定义的知识求解即可求得答案,注意掌握排除法在选择题中的应用.
    【详解】
    A、,故该选项说法错误
    B、因为,所以与的方向相同,故该选项说法正确,
    C、因为,所以,故该选项说法正确,
    D、因为,所以;故该选项说法正确,
    故选:A.
    【点睛】
    本题考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共线向量,是指方向相同或相反的非零向量.零向量和任何向量平行.
    3、D
    【解析】
    根据切线的判定,圆的知识,可得答案.
    【详解】
    解:A、在等圆或同圆中,长度相等的弧是等弧,故A错误;
    B、平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧,故B错误;
    C、经过半径的外端并且垂直于这条半径的直线是圆的切线,故C错误;
    D、在同圆或等圆中90°的圆周角所对的弦是这个圆的直径,故D正确;
    故选:D.
    【点睛】
    本题考查了切线的判定及圆的知识,利用圆的知识及切线的判定是解题关键.
    4、C
    【解析】
    ∵当x<h时,y随x的增大而增大,当x>h时,y随x的增大而减小,
    ∴①若h<1≤x≤3,x=1时,y取得最大值-5,
    可得:-(1-h)2+1=-5,
    解得:h=1-或h=1+(舍);
    ②若1≤x≤3<h,当x=3时,y取得最大值-5,
    可得:-(3-h)2+1=-5,
    解得:h=3+或h=3-(舍).
    综上,h的值为1-或3+,
    故选C.
    点睛:本题主要考查二次函数的性质和最值,根据二次函数的增减性和最值分两种情况讨论是解题的关键.
    5、D
    【解析】
    原式分解因式,判断即可.
    【详解】
    原式=2(x2﹣2x+1)=2(x﹣1)2。
    故选:D.
    【点睛】
    考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
    6、A
    【解析】
    分析:依据AD是BC边上的高,∠ABC=60°,即可得到∠BAD=30°,依据∠BAC=50°,AE平分∠BAC,即可得到∠DAE=5°,再根据△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,可得∠EAD+∠ACD=75°.
    详解:∵AD是BC边上的高,∠ABC=60°,
    ∴∠BAD=30°,
    ∵∠BAC=50°,AE平分∠BAC,
    ∴∠BAE=25°,
    ∴∠DAE=30°﹣25°=5°,
    ∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,
    ∴∠EAD+∠ACD=5°+70°=75°,
    故选A.
    点睛:本题考查了三角形内角和定理:三角形内角和为180°.解决问题的关键是三角形外角性质以及角平分线的定义的运用.
    7、C
    【解析】
    利用根与系数的关系可以构造一个两根分别是x,y的一元二次方程,方程有实数根,用根的判别式≥0来确定k的取值范围.
    【详解】
    解:∵xy=k,x+y=4,
    ∴根据根与系数的关系可以构造一个关于m的新方程,设x,y为方程的实数根.

    解不等式得

    故选:C.
    【点睛】
    本题考查了一元二次方程的根的判别式的应用和根与系数的关系.解题的关键是了解方程组有实数根的意义.
    8、C
    【解析】
    Rt△ABC通过变换得到Rt△ODE,应先旋转然后平移即可
    【详解】
    ∵Rt△ABC经过变化得到Rt△EDO,点B的坐标为(0,1),OD=2,
    ∴DO=BC=2,CO=3,
    ∴将△ABC绕点C顺时针旋转90°,再向下平移3个单位长度,即可得到△DOE;
    或将△ABC绕点O顺时针旋转90°,再向左平移3个单位长度,即可得到△DOE;
    故选:C.
    【点睛】
    本题考查的是坐标与图形变化旋转和平移的知识,解题的关键在于利用旋转和平移的概念和性质求坐标的变化
    9、C
    【解析】
    解:∵关于x的一元二次方程有实数根,
    ∴△==,
    解得m≥1,
    故选C.
    【点睛】
    本题考查一元二次方程根的判别式.
    10、B
    【解析】
    在等腰三角形△ABE中,求出∠A的度数即可解决问题.
    【详解】
    解:在正五边形ABCDE中,∠A=×(5-2)×180=108°

    又知△ABE是等腰三角形,
    ∴AB=AE,
    ∴∠ABE=(180°-108°)=36°.
    故选B.
    【点睛】
    本题主要考查多边形内角与外角的知识点,解答本题的关键是求出正五边形的内角,此题基础题,比较简单.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、m≤1.
    【解析】
    由抛物线与x轴有交点可得出方程x1+1x+m-1=0有解,利用根的判别式△≥0,即可得出关于m的一元一次不等式,解之即可得出结论.
    【详解】
    ∴关于x的一元二次方程x1+1x+m−1=0有解,
    ∴△=11−4(m−1)=8−4m≥0,
    解得:m≤1.
    故答案为:m≤1.
    【点睛】
    本题考查的知识点是抛物线与坐标轴的交点,解题的关键是熟练的掌握抛物线与坐标轴的交点.
    12、4cm
    【解析】
    求出扇形的弧长,除以2π即为圆锥的底面半径,然后利用勾股定理求得圆锥的高即可.
    【详解】
    扇形的弧长==4π,
    圆锥的底面半径为4π÷2π=2,
    故圆锥的高为:=4,
    故答案为4cm.
    【点睛】
    本题考查了圆锥的计算,重点考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.
    13、﹣2≤x<
    【解析】
    根据解不等式的步骤从而得到答案.
    【详解】

    解不等式①可得:x≥-2,
    解不等式②可得:x<,
    故答案为-2≤x<.
    【点睛】
    本题主要考查了解不等式,解本题的要点在于分别求解①,②不等式,从而得到答案.
    14、41
    【解析】
    已知一元二次方程的根判别式为△=b2﹣4ac,代入计算即可求解.
    【详解】
    依题意,一元二次方程2x2﹣3x﹣4=0,a=2,b=﹣3,c=﹣4
    ∴根的判别式为:△=b2﹣4ac=(﹣3)2﹣4×2×(﹣4)=41
    故答案为:41
    【点睛】
    本题考查了一元二次方程的根的判别式,熟知一元二次方程 ax2+bx+c=0(a≠0)的根的判别式为△=b2﹣4ac是解决问题的关键.
    15、2 2 1.1.
    【解析】
    先将这组数据从小到大排列,再找出最中间的数,即可得出中位数;找出这组数据中最多的数则是众数;先求出这组数据的平均数,再根据方差公式S2=[(x1-)2+(x2-)2+…+(xn-)2]进行计算即可.
    【详解】
    解:把这组数据从小到大排列为:2,2,2,4,5,最中间的数是2,
    则中位数是2;
    众数为2;
    ∵这组数据的平均数是(2+2+2+4+5)÷5=3,
    ∴方差是: [(2−3)2+(2−3)2+(2−3)2+(4−3)2+(5−3)2]=1.1.
    故答案为2,2,1.1.
    【点睛】
    本题考查了中位数、众数与方差的定义,解题的关键是熟练的掌握中位数、众数与方差的定义.
    16、1.
    【解析】
    设P(0,b),
    ∵直线APB∥x轴,
    ∴A,B两点的纵坐标都为b,
    而点A在反比例函数y=的图象上,
    ∴当y=b,x=-,即A点坐标为(-,b),
    又∵点B在反比例函数y=的图象上,
    ∴当y=b,x=,即B点坐标为(,b),
    ∴AB=-(-)=,
    ∴S△ABC=•AB•OP=••b=1.

    三、解答题(共8题,共72分)
    17、答案见解析
    【解析】
    连接OP,作线段OP的垂直平分线MN交OP于点K,以点K为圆心OK为半径作⊙K交⊙O于点A,A′,作直线PA,PA′,直线PA,PA′即为所求.
    【详解】
    解:连接OP,作线段OP的垂直平分线MN交OP于点K,以点K为圆心OK为半径作⊙K交⊙O于点A,A′,作直线PA,PA′,
    直线PA,PA′即为所求.

    【点睛】
    本题考查作图−复杂作图,解题的关键是灵活运用所学知识解决问题.
    18、(1)见解析;(2).
    【解析】
    (1)矩形的性质得到,得到,根据定理证明;(2)根据全等三角形的性质、勾股定理、余切的定义计算即可.
    【详解】
    解:(1)证明:四边形是矩形,


    在和中,



    (2),

    设,







    .

    【点睛】
    本题考查的是矩形的性质、勾股定理的运用、全等三角形的判定和性质以及余切的定义,掌握全等三角形的判定定理和性质定理是解题的关键.
    19、(1)2018至2020年寝室数量的年平均增长率为37.5%;(2)该校的寝室建成后最多可供1名师生住宿.
    【解析】
    (1)设2018至2020年寝室数量的年平均增长率为x,根据2018及2020年寝室数量,即可得出关于x的一元二次方程,解之取其正值即可得出结论;
    (2)设双人间有y间,则四人间有5y间,单人间有(121-6y)间,可容纳人数为w人,由单人间的数量在20至30之间(包括20和30),即可得出关于y的一元一次不等式组,解之即可得出y的取值范围,再根据可住师生数=寝室数×每间寝室可住人数,可找出w关于y的函数关系式,利用一次函数的性质即可解决最值问题.
    【详解】
    (1)解:设2018至2020年寝室数量的年平均增长率为x,
    根据题意得:64(1+x)2=121,
    解得:x1=0.375=37.5%,x2=﹣2.375(不合题意,舍去).
    答:2018至2020年寝室数量的年平均增长率为37.5%.
    (2)解:设双人间有y间,可容纳人数为w人,则四人间有5y间,单人间有(121﹣6y)间,
    ∵单人间的数量在20至30之间(包括20和30),
    ∴ ,
    解得:15 ≤y≤16 .
    根据题意得:w=2y+20y+121﹣6y=16y+121,
    ∴当y=16时,16y+121取得最大值为1.
    答:该校的寝室建成后最多可供1名师生住宿.
    【点睛】
    本题考查了一元二次方程的应用、一元一次不等式组的应用以及一次函数的性质,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量之间的关系,找出w关于y的函数关系式.
    20、 (1)见解析;(2).
    【解析】
    (1)连接OD,由DH⊥AC,DH是⊙O的切线,然后由平行线的判定与性质可证∠C=∠ODB,由圆周角定理可得∠OBD=∠DEC,进而∠C=∠DEC,可证结论成立;
    (2)证明△OFD∽△AFE,根据相似三角形的性质即可求出圆的半径.
    【详解】
    (1)证明:连接OD,
    由题意得:DH⊥AC,由且DH是⊙O的切线,∠ODH=∠DHA=90°,
    ∴∠ODH=∠DHA=90°,
    ∴OD∥CA,
    ∴∠C=∠ODB,
    ∵OD=OB,
    ∴∠OBD=∠ODB,
    ∴∠OBD=∠C,
    ∵∠OBD=∠DEC,
    ∴∠C=∠DEC,
    ∴DC=DE;
    (2)解:由(1)可知:OD∥AC,
    ∴∠ODF=∠AEF,
    ∵∠OFD=∠AFE,
    ∴△OFD∽△AFE,
    ∴,
    ∵AE=1,
    ∴OD=,
    ∴⊙O的半径为.

    【点睛】
    本题考查了切线的性质,平行线的判定与性质,等腰三角形的性质与判定,圆周角定理的推论,相似三角形的判定与性质,难度中等,熟练掌握各知识点是解答本题的关键.
    21、(1)16;(2)平均数是3,众数是10,中位数是3;(3)1.
    【解析】
    (1)根据有7名留守儿童班级有2个,所占的百分比是2.5%,即可求得班级的总个数,再求出有8名留守儿童班级的个数,进而补全条形统计图;
    (2)将这组数据按照从小到大排列即可求得统计的这组留守儿童人数数据的平均数、众数和中位数;
    (3)利用班级数60乘以(2)中求得的平均数即可.
    【详解】
    解:(1)该校的班级数是:2÷2.5%=16(个).
    则人数是8名的班级数是:16﹣1﹣2﹣6﹣2=5(个).
    条形统计图补充如下图所示:

    故答案为16;
    (2)每班的留守儿童的平均数是:(1×6+2×7+5×8+6×10+2×2)÷16=3
    将这组数据按照从小到大排列是:6,7,7,8,8,8,8,8,10,10,10,10,10,10,2,2.
    故这组数据的众数是10,中位数是(8+10)÷2=3.
    即统计的这组留守儿童人数数据的平均数是3,众数是10,中位数是3;
    (3)该镇小学生中,共有留守儿童60×3=1(名).
    答:该镇小学生中共有留守儿童1名.
    【点睛】
    本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了平均数、中位数和众数以及用样本估计总体.
    22、(1)△ABD,△ACD,△DCE(2)△BDF∽△CED∽△DEF,证明见解析;(3)4.
    【解析】
    (1)根据等腰三角形的性质以及相似三角形的判定得出△ADE∽△ABD∽△ACD∽△DCE,同理可得:△ADE∽△ACD.△ADE∽△DCE.
    (2)利用已知首先求出∠BFD=∠CDE,即可得出△BDF∽△CED,再利用相似三角形的性质得出,从而得出△BDF∽△CED∽△DEF.
    (3)利用△DEF的面积等于△ABC的面积的,求出DH的长,从而利用S△DEF的值求出EF即可
    【详解】
    解:(1)图(1)中与△ADE相似的有△ABD,△ACD,△DCE.
    (2)△BDF∽△CED∽△DEF,证明如下:
    ∵∠B+∠BDF+∠BFD=30°,∠EDF+∠BDF+∠CDE=30°,
    又∵∠EDF=∠B,
    ∴∠BFD=∠CDE.
    ∵AB=AC,
    ∴∠B=∠C.
    ∴△BDF∽△CED.
    ∴.
    ∵BD=CD,
    ∴,即.
    又∵∠C=∠EDF,
    ∴△CED∽△DEF.
    ∴△BDF∽△CED∽△DEF.
    (3)连接AD,过D点作DG⊥EF,DH⊥BF,垂足分别为G,H.

    ∵AB=AC,D是BC的中点,
    ∴AD⊥BC,BD=BC=1.
    在Rt△ABD中,AD2=AB2﹣BD2,即AD2=102﹣3,
    ∴AD=2.
    ∴S△ABC=•BC•AD=×3×2=42,
    S△DEF=S△ABC=×42=3.
    又∵•AD•BD=•AB•DH,
    ∴.
    ∵△BDF∽△DEF,
    ∴∠DFB=∠EFD.
    ∵DH⊥BF,DG⊥EF,
    ∴∠DHF=∠DGF.
    又∵DF=DF,
    ∴△DHF≌△DGF(AAS).
    ∴DH=DG=.
    ∵S△DEF=·EF·DG=·EF·=3,
    ∴EF=4.
    【点睛】
    本题考查了和相似有关的综合性题目,用到的知识点有三角形相似的判定和性质、等腰三角形的性质以及勾股定理的运用,灵活运用相似三角形的判定定理和性质定理是解题的关键,解答时,要仔细观察图形、选择合适的判定方法,注意数形结合思想的运用.
    23、(1)证明见解析;(2)证明见解析.
    【解析】
    (1)由于AD∥BC,AB∥CD,通过三角形相似,找到分别于,都相等的比,把比例式变形为等积式,问题得证.
    (2)推出∽,再结合,可证得答案.
    【详解】
    (1)证明:∵四边形是平行四边形,
    ∴,,
    ∴, ,
    ∴即.
    (2)∵四边形是平行四边形,
    ∴,又∵,
    ∴即,
    又∵,
    ∴∽,
    ∴,
    ∵,
    ∴,
    ∵,
    ∴.
    【点睛】
    本题考查的知识点是相似三角形的判定与性质,解题的关键是熟练的掌握相似三角形的判定与性质.
    24、(1)见解析;(2)①1;②:x=0或x=4﹣4或4<x<4;
    【解析】
    (1)分别以M、N为圆心,以大于MN为半径作弧,两弧相交与两点,过两弧交点的直线就是MN的垂直平分线;(2)①分为PM=PN,MP=MN,NP=NM三种情况进行判断即可;②如图1,构建腰长为4的等腰直角△OMC,和半径为4的⊙M,发现M在点D的位置时,满足条件;如图4,根据等腰三角形三种情况的画法:分别以M、N为圆心,以MN为半径画弧,与OB的交点就是满足条件的点P,再以MN为底边的等腰三角形,通过画图发现,无论x取何值,以MN为底边的等腰三角形都存在一个,所以只要满足以MN为腰的三角形有两个即可.
    【详解】
    解:(1)如图所示:

    (2)①如图所示:

    故答案为1.
    ②如图1,以M为圆心,以4为半径画圆,当⊙M与OB相切时,设切点为C,⊙M与OA交于D,

    ∴MC⊥OB,
    ∵∠AOB=45°,
    ∴△MCO是等腰直角三角形,
    ∴MC=OC=4,

    当M与D重合时,即时,同理可知:点P恰好有三个;
    如图4,取OM=4,以M为圆心,以OM为半径画圆.

    则⊙M与OB除了O外只有一个交点,此时x=4,即以∠PMN为顶角,MN为腰,符合条件的点P有一个,以N圆心,以MN为半径画圆,与直线OB相离,说明此时以∠PNM为顶角,以MN为腰,符合条件的点P不存在,还有一个是以NM为底边的符合条件的点P;
    点M沿OA运动,到M1时,发现⊙M1与直线OB有一个交点;
    ∴当时,圆M在移动过程中,则会与OB除了O外有两个交点,满足点P恰好有三个;
    综上所述,若使点P,M,N构成等腰三角形的点P恰好有三个,则x的值是:x=0或或
    故答案为x=0或或
    【点睛】
    本题考查了等腰三角形的判定,有难度,本题通过数形结合的思想解决问题,解题的关键是熟练掌握已知一边,作等腰三角形的画法.

    相关试卷

    广东省揭阳市榕城区一中学2021-2022学年中考数学最后冲刺模拟试卷含解析:

    这是一份广东省揭阳市榕城区一中学2021-2022学年中考数学最后冲刺模拟试卷含解析,共26页。试卷主要包含了若,则x-y的正确结果是,已知x+=3,则x2+=等内容,欢迎下载使用。

    广东省揭阳市揭阳岐山中学2022年初中数学毕业考试模拟冲刺卷含解析:

    这是一份广东省揭阳市揭阳岐山中学2022年初中数学毕业考试模拟冲刺卷含解析,共23页。

    2022届广东省揭阳市空港区初中数学毕业考试模拟冲刺卷含解析:

    这是一份2022届广东省揭阳市空港区初中数学毕业考试模拟冲刺卷含解析,共21页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map