![2021-2022学年广西合浦县联考中考数学模拟试题含解析01](http://www.enxinlong.com/img-preview/2/3/13023858/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年广西合浦县联考中考数学模拟试题含解析02](http://www.enxinlong.com/img-preview/2/3/13023858/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年广西合浦县联考中考数学模拟试题含解析03](http://www.enxinlong.com/img-preview/2/3/13023858/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2021-2022学年广西合浦县联考中考数学模拟试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,反比例函数y=-的图象与直线y=-x的交点为A、B,过点A作y轴的平行线与过点B作的x轴的平行线相交于点C,则△ABC的面积为( )
A.8 B.6 C.4 D.2
2.如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为( )
A.34° B.56° C.66° D.54°
3.一个几何体的三视图如图所示,则该几何体的形状可能是( )
A. B.
C. D.
4.已知反比例函数y=的图象位于第一、第三象限,则k的取值范围是( )
A.k>8 B.k≥8 C.k≤8 D.k<8
5.如图,在△ABC中,AB=5,AC=4,∠A=60°,若边AC的垂直平分线DE交AB于点D,连接CD,则△BDC的周长为( )
A.8 B.9 C.5+ D.5+
6.下列运算正确的是( )
A.a﹣3a=2a B.(ab2)0=ab2 C.= D.×=9
7.下列说法正确的是( )
A.某工厂质检员检测某批灯泡的使用寿命采用普查法
B.已知一组数据1,a,4,4,9,它的平均数是4,则这组数据的方差是7.6
C.12名同学中有两人的出生月份相同是必然事件
D.在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”中,任取其中一个图形,恰好既是中心对称图形,又是轴对称图形的概率是
8.如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有( )
A.1处 B.2处 C.3处 D.4处
9.不等式组的解集是 ( )
A.x>-1 B.x>3
C.-1<x<3 D.x<3
10.以下各图中,能确定的是( )
A. B. C. D.
11.下面的图形是轴对称图形,又是中心对称图形的有( )
A.1个 B.2个 C.3个 D.4个
12.下列是我国四座城市的地铁标志图,其中是中心对称图形的是( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.已知x1,x2是方程x2-3x-1=0的两根,则=______.
14.在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是_____.
15.如图,宽为的长方形图案由8个相同的小长方形拼成,若小长方形的边长为整数,则的值为__________.
16.有公共顶点A,B的正五边形和正六边形按如图所示位置摆放,连接AC交正六边形于点D,则∠ADE的度数为( )
A.144° B.84° C.74° D.54°
17.如图,在平行四边形纸片上做随机扎针实验,则针头扎在阴影区域的概率为__________.
18.方程3x2﹣5x+2=0的一个根是a,则6a2﹣10a+2=_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)某经销商从市场得知如下信息:
A品牌手表
B品牌手表
进价(元/块)
700
100
售价(元/块)
900
160
他计划用4万元资金一次性购进这两种品牌手表共100块,设该经销商购进A品牌手表x块,这两种品牌手表全部销售完后获得利润为y元.试写出y与x之间的函数关系式;若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案;选择哪种进货方案,该经销商可获利最大;最大利润是多少元.
20.(6分)如图,∠A=∠B=30°
(1)尺规作图:过点C作CD⊥AC交AB于点D;
(只要求作出图形,保留痕迹,不要求写作法)
(2)在(1)的条件下,求证:BC2=BD•AB.
21.(6分)随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:
请依据统计结果回答下列问题:本次调查中,一共调查了 位好友.已知A类好友人数是D类好友人数的5倍.
①请补全条形图;
②扇形图中,“A”对应扇形的圆心角为 度.
③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?
22.(8分)已知:如图,在平面直角坐标系xOy中,直线AB分别与x轴、y轴交于点B,A,与反比例函数的图象分别交于点C,D,CE⊥x轴于点E,tan∠ABO=,OB=4,OE=1.
(1)求该反比例函数的解析式;
(1)求三角形CDE的面积.
23.(8分)已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.求证:AB=AF;若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.
24.(10分)在汕头市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,电子白板的价格是电脑的3倍,购买5台电脑和10台电子白板需要17.5万元,求每台电脑、每台电子白板各多少万元?
25.(10分)某小区为了安全起见,决定将小区内的滑滑板的倾斜角由45°调为30°,如图,已知原滑滑板AB的长为4米,点D,B,C在同一水平地面上,调整后滑滑板会加长多少米?(结果精确到0.01米,参考数据:,,)
26.(12分)如图:△PCD是等腰直角三角形,∠DPC=90°,∠APB=135°
求证:(1)△PAC∽△BPD;
(2)若AC=3,BD=1,求CD的长.
27.(12分)解不等式组:,并把解集在数轴上表示出来.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
试题解析:由于点A、B在反比例函数图象上关于原点对称,
则△ABC的面积=2|k|=2×4=1.
故选A.
考点:反比例函数系数k的几何意义.
2、B
【解析】
试题分析:∵AB∥CD,
∴∠D=∠1=34°,
∵DE⊥CE,
∴∠DEC=90°,
∴∠DCE=180°﹣90°﹣34°=56°.
故选B.
考点:平行线的性质.
3、D
【解析】试题分析:由主视图和左视图可得此几何体上面为台,下面为柱体,由俯视图为圆环可得几何体为.故选D.
考点:由三视图判断几何体.
视频
4、A
【解析】
本题考查反比例函数的图象和性质,由k-8>0即可解得答案.
【详解】
∵反比例函数y=的图象位于第一、第三象限,
∴k-8>0,
解得k>8,
故选A.
【点睛】
本题考查了反比例函数的图象和性质:①、当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②、当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.
5、C
【解析】
过点C作CM⊥AB,垂足为M,根据勾股定理求出BC的长,再根据DE是线段AC的垂直平分线可得△ADC等边三角形,则CD=AD=AC=4,代入数值计算即可.
【详解】
过点C作CM⊥AB,垂足为M,
在Rt△AMC中,
∵∠A=60°,AC=4,
∴AM=2,MC=2,
∴BM=AB-AM=3,
在Rt△BMC中,
BC===,
∵DE是线段AC的垂直平分线,
∴AD=DC,
∵∠A=60°,
∴△ADC等边三角形,
∴CD=AD=AC=4,
∴△BDC的周长=DB+DC+BC=AD+DB+BC=AB+BC=5+.
故答案选C.
【点睛】
本题考查了勾股定理,解题的关键是熟练的掌握勾股定理的运算.
6、D
【解析】
直接利用合并同类项法则以及二次根式的性质、二次根式乘法、零指数幂的性质分别化简得出答案.
【详解】
解:A、a﹣3a=﹣2a,故此选项错误;
B、(ab2)0=1,故此选项错误;
C、故此选项错误;
D、×=9,正确.
故选D.
【点睛】
此题主要考查了合并同类项以及二次根式的性质、二次根式乘法、零指数幂的性质,正确把握相关性质是解题关键.
7、B
【解析】
分别用方差、全面调查与抽样调查、随机事件及概率的知识逐一进行判断即可得到答案.
【详解】
A. 某工厂质检员检测某批灯泡的使用寿命时,检测范围比较大,因此适宜采用抽样调查的方法,故本选项错误;
B. 根据平均数是4求得a的值为2,则方差为 [(1−4)2+(2−4)2+(4−4)2+(4−4)2+(9−4)2]=7.6,故本选项正确;
C. 12个同学的生日月份可能互不相同,故本事件是随机事件,故错误;
D. 在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”六个图形中有3个既是轴对称图形,又是中心对称图形,所以,恰好既是中心对称图形,又是轴对称图形的概率是,故本选项错误.
故答案选B.
【点睛】
本题考查的知识点是概率公式、全面调查与抽样调查、方差及随机事件,解题的关键是熟练的掌握概率公式、全面调查与抽样调查、方差及随机事件.
8、D
【解析】
到三条相互交叉的公路距离相等的地点应是三条角平分线的交点.把三条公路的中心部位看作三角形,那么这个三角形两个内角平分线的交点以及三个外角两两平分线的交点都满足要求.
【详解】
满足条件的有:
(1)三角形两个内角平分线的交点,共一处;
(2)三个外角两两平分线的交点,共三处.
如图所示,
故选D.
【点睛】
本题考查了角平分线的性质;这是一道生活联系实际的问题,解答此类题目时最直接的判断就是三角形的角平分线,很容易漏掉外角平分线,解答时一定要注意,不要漏解.
9、B
【解析】
根据解不等式组的方法可以求得原不等式组的解集.
【详解】
,
解不等式①,得x>-1,
解不等式②,得x>1,
由①②可得,x>1,
故原不等式组的解集是x>1.
故选B.
【点睛】
本题考查解一元一次不等式组,解题的关键是明确解一元一次不等式组的方法.
10、C
【解析】
逐一对选项进行分析即可得出答案.
【详解】
A中,利用三角形外角的性质可知,故该选项错误;
B中,不能确定的大小关系,故该选项错误;
C中,因为同弧所对的圆周角相等,所以,故该选项正确;
D中,两直线不平行,所以,故该选项错误.
故选:C.
【点睛】
本题主要考查平行线的性质及圆周角定理的推论,掌握圆周角定理的推论是解题的关键.
11、B
【解析】
根据轴对称图形和中心对称图形的定义对各个图形进行逐一分析即可.
【详解】
解:第一个图形是轴对称图形,但不是中心对称图形;
第二个图形是中心对称图形,但不是轴对称图形;
第三个图形既是轴对称图形,又是中心对称图形;
第四个图形即是轴对称图形,又是中心对称图形;
∴既是轴对称图形,又是中心对称图形的有两个,
故选:B.
【点睛】
此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180°后两部分重合.
12、D
【解析】
根据中心对称图形的定义解答即可.
【详解】
选项A不是中心对称图形;
选项B不是中心对称图形;
选项C不是中心对称图形;
选项D是中心对称图形.
故选D.
【点睛】
本题考查了中心对称图形的定义,熟练运用中心对称图形的定义是解决问题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、﹣1.
【解析】
试题解析:∵,是方程的两根,∴、,∴== =﹣1.故答案为﹣1.
14、
【解析】
根据随机事件概率大小的求法,找准两点:
①符合条件的情况数目;
②全部情况的总数.
二者的比值就是其发生的概率的大小.
【详解】
解:∵在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,
∴从中任意摸出一个球,则摸出白球的概率是.
故答案为:.
【点睛】
本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=
15、16
【解析】
设小长方形的宽为a,长为b,根据大长方形的性质可得5a=3b,m=a+b= a+=,再根据m的取值范围即可求出a的取值范围,又因为小长方形的边长为整数即可解答.
【详解】
解:设小长方形的宽为a,长为b,由题意得:5a=3b,所以b=,m=a+b= a+=,因为,所以10<<20,解得: 故答案为:16.
【点睛】
本题考查整式的列式、取值,解题关键是根据矩形找出小长方形的边长关系.
16、B
【解析】
正五边形的内角是∠ABC==108°,∵AB=BC,∴∠CAB=36°,正六边形的内角是∠ABE=∠E==120°,∵∠ADE+∠E+∠ABE+∠CAB=360°,∴∠ADE=360°–120°–120°–36°=84°,故选B.
17、
【解析】
先根据平行四边形的性质求出对角线所分的四个三角形面积相等,再求出概率即可.
【详解】
解:∵四边形是平行四边形,
∴对角线把平行四边形分成面积相等的四部分,
观察发现:图中阴影部分面积=S四边形,
∴针头扎在阴影区域内的概率为;
故答案为:.
【点睛】
此题主要考查了几何概率,以及平行四边形的性质,用到的知识点为:概率=相应的面积与总面积之比.
18、-1
【解析】
根据一元二次方程的解的定义,将x=a代入方程3x1-5x+1=0,列出关于a的一元二次方程,通过变形求得3a1-5a的值后,将其整体代入所求的代数式并求值即可.
【详解】
解:∵方程3x1-5x+1=0的一个根是a,
∴3a1-5a+1=0,
∴3a1-5a=-1,
∴6a1-10a+1=1(3a1-5a)+1=-1×1+1=-1.
故答案是:-1.
【点睛】
此题主要考查了方程解的定义.此类题型的特点是,利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)y=140x+6000;(2)三种,答案见解析;(3)选择方案③进货时,经销商可获利最大,最大利润是13000元.
【解析】
(1)根据利润y=(A售价﹣A进价)x+(B售价﹣B进价)×(100﹣x)列式整理即可;
(2)全部销售后利润不少于1.26万元得到一元一次不等式组,求出满足题意的x的正整数值即可;
(3)利用y与x的函数关系式的增减性来选择哪种方案获利最大,并求此时的最大利润即可.
【详解】
解:(1)y=(900﹣700)x+(160﹣100)×(100﹣x)=140x+6000.
由700x+100(100﹣x)≤40000得x≤50.
∴y与x之间的函数关系式为y=140x+6000(x≤50)
(2)令y≥12600,即140x+6000≥12600,
解得x≥47.1.
又∵x≤50,∴经销商有以下三种进货方案:
方案
A品牌(块)
B品牌(块)
①
48
52
②
49
51
③
50
50
(3)∵140>0,∴y随x的增大而增大.
∴x=50时y取得最大值.
又∵140×50+6000=13000,
∴选择方案③进货时,经销商可获利最大,最大利润是13000元.
【点睛】
本题考查由实际问题列函数关系式;一元一次不等式的应用;一次函数的应用.
20、见解析
【解析】
(1)利用过直线上一点作直线的垂线确定D点即可得;
(2)根据圆周角定理,由∠ACD=90°,根据三角形的内角和和等腰三角形的性质得到∠DCB=∠A=30°,推出△CDB∽△ACB,根据相似三角形的性质即可得到结论.
【详解】
(1)如图所示,CD即为所求;
(2)∵CD⊥AC,
∴∠ACD=90°
∵∠A=∠B=30°,
∴∠ACB=120°
∴∠DCB=∠A=30°,
∵∠B=∠B,
∴△CDB∽△ACB,
∴,
∴BC2=BD•AB.
【点睛】
考查了等腰三角形的性质和相似三角形的判定和性质和作图:在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.
21、(1)30;(2)①补图见解析;②120;③70人.
【解析】
分析:(1)由B类别人数及其所占百分比可得总人数;
(2)①设D类人数为a,则A类人数为5a,根据总人数列方程求得a的值,从而补全图形;
②用360°乘以A类别人数所占比例可得;
③总人数乘以样本中C、D类别人数和所占比例.
详解:(1)本次调查的好友人数为6÷20%=30人,
故答案为:30;
(2)①设D类人数为a,则A类人数为5a,
根据题意,得:a+6+12+5a=30,
解得:a=2,
即A类人数为10、D类人数为2,
补全图形如下:
②扇形图中,“A”对应扇形的圆心角为360°×=120°,
故答案为:120;
③估计大约6月1日这天行走的步数超过10000步的好友人数为150×=70人.
点睛:此题主要考查了条形统计图、扇形统计图的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
22、(1);(1)11.
【解析】
(1)根据正切的定义求出OA,证明△BAO∽△BEC,根据相似三角形的性质计算;
(1)求出直线AB的解析式,解方程组求出点D的坐标,根据三角形CDE的面积=三角形CBE的面积+三角形BED的面积计算即可.
【详解】
解:(1)∵tan∠ABO=,OB=4,
∴OA=1,
∵OE=1,
∴BE=6,
∵AO∥CE,
∴△BAO∽△BEC,
∴=,即=,
解得,CE=3,即点C的坐标为(﹣1,3),
∴反比例函数的解析式为:;
(1)设直线AB的解析式为:y=kx+b,
则,
解得,,
则直线AB的解析式为:,
,
解得,,,
∴当D的坐标为(6,1),
∴三角形CDE的面积=三角形CBE的面积+三角形BED的面积
=×6×3+×6×1
=11.
【点睛】
此题考查的是反比例函数与一次函数的交点问题,掌握待定系数法求函数解析式的一般步骤、求反比例函数与一次函数的交点的方法是解题的关键.
23、(1)证明见解析;(2)结论:四边形ACDF是矩形.理由见解析.
【解析】
(1)只要证明AB=CD,AF=CD即可解决问题;
(2)结论:四边形ACDF是矩形.根据对角线相等的平行四边形是矩形判断即可;
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴BE∥CD,AB=CD,
∴∠AFC=∠DCG,
∵GA=GD,∠AGF=∠CGD,
∴△AGF≌△DGC,
∴AF=CD,
∴AB=CF.
(2)解:结论:四边形ACDF是矩形.
理由:∵AF=CD,AF∥CD,
∴四边形ACDF是平行四边形,
∵四边形ABCD是平行四边形,
∴∠BAD=∠BCD=120°,
∴∠FAG=60°,
∵AB=AG=AF,
∴△AFG是等边三角形,
∴AG=GF,
∵△AGF≌△DGC,
∴FG=CG,∵AG=GD,
∴AD=CF,
∴四边形ACDF是矩形.
【点睛】
本题考查平行四边形的判定和性质、矩形的判定、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.
24、每台电脑0.5万元;每台电子白板1.5万元.
【解析】
先设每台电脑x万元,每台电子白板y万元,根据电子白板的价格是电脑的3倍,购买5台电脑和10台电子白板需要17.5万元列出方程组,求出x,y的值即可.
【详解】
设每台电脑x万元,每台电子白板y万元.
根据题意,得:
解得,
答:每台电脑0.5万元,每台电子白板1.5万元.
【点睛】
本题考查了二元一次方程组的应用,解题的关键是读懂题意,找出之间的数量关系,列出二元一次方程组.
25、改善后滑板会加长1.1米.
【解析】
在Rt△ABC中,根据AB=4米,∠ABC=45°,求出AC的长度,然后在Rt△ADC中,解直角三角形求AD的长度,用AD-AB即可求出滑板加长的长度.
【详解】
解:在Rt△ABC中,AC=AB•sin45°=4×=,
在Rt△ADC中,AD=2AC=,
AD-AB=-4≈1.1.
答:改善后滑板会加长1.1米.
【点睛】
本题主要考查了解直角三角形的应用,利用这两个直角三角形公共的直角边解直角三角形是解答本题的关键.
26、(1)见解析;(2).
【解析】
(1)由△PCD是等腰直角三角形,∠DPC=90°,∠APB=135°,可得∠PAB=∠PBD,∠BPD=∠PAC,从而即可证明;
(2)根据相似三角形对应边成比例即可求出PC=PD=,再由勾股定理即可求解.
【详解】
证明:(1)∵△PCD是等腰直角三角形,∠DPC=90°,∠APB=135°,
∴∠APC+∠BPD=45°,
又∠PAB+∠PBA=45°,∠PBA+∠PBD=45°,
∴∠PAB=∠PBD,∠BPD=∠PAC,
∵∠PCA=∠PDB,
∴△PAC∽△BPD;
(2)∵,PC=PD,AC=3,BD=1
∴PC=PD=,
∴CD=.
【点睛】
本题考查了相似三角形的判定与性质及等腰直角三角形,属于基础题,关键是掌握相似三角形的判定方法.
27、则不等式组的解集是﹣1<x≤3,不等式组的解集在数轴上表示见解析.
【解析】
先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.
【详解】
解不等式①得:x>﹣1,
解不等式②得:x≤3,
则不等式组的解集是:﹣1<x≤3,
不等式组的解集在数轴上表示为:
.
【点睛】
本题考查了解一元一次不等式组,熟知确定解集的方法“同大取大,同小取小,大小小大中间找,大大小小无处找”是解题的关键.也考查了在数轴上表示不等式组的解集.
广西合浦县2021-2022学年中考数学最后冲刺浓缩精华卷含解析: 这是一份广西合浦县2021-2022学年中考数学最后冲刺浓缩精华卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,1﹣的相反数是等内容,欢迎下载使用。
广西北海市合浦县2021-2022学年中考试题猜想数学试卷含解析: 这是一份广西北海市合浦县2021-2022学年中考试题猜想数学试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列各式计算正确的是,4的平方根是等内容,欢迎下载使用。
广西合浦县联考2021-2022学年中考一模数学试题含解析: 这是一份广西合浦县联考2021-2022学年中考一模数学试题含解析,共21页。