|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021-2022学年广西北部湾经济区市级名校中考数学全真模拟试卷含解析
    立即下载
    加入资料篮
    2021-2022学年广西北部湾经济区市级名校中考数学全真模拟试卷含解析01
    2021-2022学年广西北部湾经济区市级名校中考数学全真模拟试卷含解析02
    2021-2022学年广西北部湾经济区市级名校中考数学全真模拟试卷含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年广西北部湾经济区市级名校中考数学全真模拟试卷含解析

    展开
    这是一份2021-2022学年广西北部湾经济区市级名校中考数学全真模拟试卷含解析,共23页。试卷主要包含了函数的图像位于等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.△ABC在网络中的位置如图所示,则cos∠ACB的值为(  )

    A. B. C. D.
    2.如图,在平面直角坐标系中,已知点B、C的坐标分别为点B(﹣3,1)、C(0,﹣1),若将△ABC绕点C沿顺时针方向旋转90°后得到△A1B1C,则点B对应点B1的坐标是(  )

    A.(3,1) B.(2,2) C.(1,3) D.(3,0)
    3.已知:如图,AD是△ABC的角平分线,且AB:AC=3:2,则△ABD与△ACD的面积之比为(  )

    A.3:2 B.9:4 C.2:3 D.4:9
    4.估计的值在(  )
    A.4和5之间 B.5和6之间 C.6和7之间 D.7和8之间
    5.如图,两个等直径圆柱构成如图所示的T形管道,则其俯视图正确的是( )
    A.
    B.
    C.
    D.
    6.函数的图像位于( )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    7.将函数的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是( )
    A.向左平移1个单位 B.向右平移3个单位
    C.向上平移3个单位 D.向下平移1个单位
    8.如图,正比例函数y=x与反比例函数的图象交于A(2,2)、B(﹣2,﹣2)两点,当y=x的函数值大于的函数值时,x的取值范围是( )

    A.x>2 B.x<﹣2
    C.﹣2<x<0或0<x<2 D.﹣2<x<0或x>2
    9.如图数轴的A、B、C三点所表示的数分别为a、b、c.若|a﹣b|=3,|b﹣c|=5,且原点O与A、B的距离分别为4、1,则关于O的位置,下列叙述何者正确?(  )

    A.在A的左边 B.介于A、B之间
    C.介于B、C之间 D.在C的右边
    10.如图,在菱形ABCD中,AB=5,∠BCD=120°,则△ABC的周长等于( )

    A.20 B.15 C.10 D.5
    二、填空题(共7小题,每小题3分,满分21分)
    11.写出一个平面直角坐标系中第三象限内点的坐标:(__________)
    12.如图,在等腰中,,点在以斜边为直径的半圆上,为的中点.当点沿半圆从点运动至点时,点运动的路径长是________.

    13.为了了解某班数学成绩情况,抽样调查了13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分.则这组数据的中位数为______分.
    14.一个斜面的坡度i=1:0.75,如果一个物体从斜面的底部沿着斜面方向前进了20米,那么这个物体在水平方向上前进了_____米.
    15.有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:

    则,y2=_____,第n次的运算结果yn=_____.(用含字母x和n的代数式表示).
    16.如图,在平面直角坐标系中,点A(0,6),点B在x轴的负半轴上,将线段AB绕点A逆时针旋转90°至AB',点M是线段AB'的中点,若反比例函数y=(k≠0)的图象恰好经过点B'、M,则k=_____.

    17.已知在Rt△ABC中,∠C=90°,BC=5,AC=12,E为线段AB的中点,D点是射线AC上的一个动点,将△ADE沿线段DE翻折,得到△A′DE,当A′D⊥AB时,则线段AD的长为_____.

    三、解答题(共7小题,满分69分)
    18.(10分)一个不透明的口袋里装有分别标有汉字“美”、“丽”、“光”、“明”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.
    (1)若从中任取一个球,求摸出球上的汉字刚好是“美”的概率;
    (2)甲从中任取一球,不放回,再从中任取一球,请用树状图或列表法,求甲取出的两个球上的汉字恰能组成“美丽”或“光明”的概率.
    19.(5分)如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PA、PB、AB、OP,已知PB是⊙O的切线.
    (1)求证:∠PBA=∠C;
    (2)若OP∥BC,且OP=9,⊙O的半径为3,求BC的长.

    20.(8分)如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B的左侧),C为顶点,直线y=x+m经过点A,与y轴交于点D.求线段AD的长;平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.

    21.(10分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是   ;以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是   .

    22.(10分)已知A(﹣4,2)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数y=图象的两个交点.求一次函数和反比例函数的解析式;求△AOB的面积;观察图象,直接写出不等式kx+b﹣>0的解集.

    23.(12分)如图,在平面直角坐标系中,函数的图象经过点,直线与x轴交于点.求的值;过第二象限的点作平行于x轴的直线,交直线于点C,交函数的图象于点D.
    ①当时,判断线段PD与PC的数量关系,并说明理由;
    ②若,结合函数的图象,直接写出n的取值范围.

    24.(14分)综合与探究:
    如图1,抛物线y=﹣x2+x+与x轴分别交于A、B两点(点A在点B的左侧),与y轴交于C点.经过点A的直线l与y轴交于点D(0,﹣).
    (1)求A、B两点的坐标及直线l的表达式;
    (2)如图2,直线l从图中的位置出发,以每秒1个单位的速度沿x轴的正方向运动,运动中直线l与x轴交于点E,与y轴交于点F,点A 关于直线l的对称点为A′,连接FA′、BA′,设直线l的运动时间为t(t>0)秒.探究下列问题:
    ①请直接写出A′的坐标(用含字母t的式子表示);
    ②当点A′落在抛物线上时,求直线l的运动时间t的值,判断此时四边形A′BEF的形状,并说明理由;
    (3)在(2)的条件下,探究:在直线l的运动过程中,坐标平面内是否存在点P,使得以P,A′,B,E为顶点的四边形为矩形?若存在,请直接写出点P的坐标; 若不存在,请说明理由.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】
    作AD⊥BC的延长线于点D,如图所示:

    在Rt△ADC中,BD=AD,则AB=BD.
    cos∠ACB=,
    故选B.
    2、B
    【解析】
    作出点A、B绕点C按顺时针方向旋转90°后得到的对应点,再顺次连接可得△A1B1C,即可得到点B对应点B1的坐标.
    【详解】
    解:如图所示,△A1B1C即为旋转后的三角形,点B对应点B1的坐标为(2,2).

    故选:B.
    【点睛】
    此题主要考查了平移变换和旋转变换,正确根据题意得出对应点位置是解题关键. 图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.
    3、A
    【解析】
    试题解析:过点D作DE⊥AB于E,DF⊥AC于F.

    ∵AD为∠BAC的平分线,
    ∴DE=DF,又AB:AC=3:2,

    故选A.
    点睛:角平分线上的点到角两边的距离相等.
    4、C
    【解析】
    ∵ ,
    ∴.
    即的值在6和7之间.
    故选C.
    5、B
    【解析】
    试题分析:三视图就是主视图(正视图)、俯视图、左视图的总称.从物体的前面向后面投射所得的视图称主视图(正视图)——能反映物体的前面形状;从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状;从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状.故选B
    考点:三视图
    6、D
    【解析】
    根据反比例函数中,当,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大,进而得出答案.
    【详解】
    解:函数的图象位于第四象限.
    故选:D.
    【点睛】
    此题主要考查了反比例函数的性质,正确记忆反比例函数图象分布的象限是解题关键.
    7、D
    【解析】
    A.平移后,得y=(x+1)2,图象经过A点,故A不符合题意;
    B.平移后,得y=(x−3)2,图象经过A点,故B不符合题意;
    C.平移后,得y=x2+3,图象经过A点,故C不符合题意;
    D.平移后,得y=x2−1图象不经过A点,故D符合题意;
    故选D.
    8、D
    【解析】
    试题分析:观察函数图象得到当﹣2<x<0或x>2时,正比例函数图象都在反比例函数图象上方,即有y=x的函数值大于的函数值.故选D.
    考点:1.反比例函数与一次函数的交点问题;2. 数形结合思想的应用.
    9、C
    【解析】
    分析:由A、B、C三点表示的数之间的关系结合三点在数轴上的位置即可得出b=a+3,c=b+5,再根据原点O与A、B的距离分别为1、1,即可得出a=±1、b=±1,结合a、b、c间的关系即可求出a、b、c的值,由此即可得出结论.
    解析:∵|a﹣b|=3,|b﹣c|=5,
    ∴b=a+3,c=b+5,
    ∵原点O与A、B的距离分别为1、1,
    ∴a=±1,b=±1,
    ∵b=a+3,
    ∴a=﹣1,b=﹣1,
    ∵c=b+5,
    ∴c=1.
    ∴点O介于B、C点之间.
    故选C.
    点睛:本题考查了数值以及绝对值,解题的关键是确定a、b、c的值.本题属于基础题,难度不大,解决该题型题目时,根据数轴上点的位置关系分别找出各点代表的数是关键.
    10、B
    【解析】
    ∵ABCD是菱形,∠BCD=120°,∴∠B=60°,BA=BC.
    ∴△ABC是等边三角形.∴△ABC的周长=3AB=1.故选B

    二、填空题(共7小题,每小题3分,满分21分)
    11、答案不唯一,如:(﹣1,﹣1),横坐标和纵坐标都是负数即可.
    【解析】
    让横坐标、纵坐标为负数即可.
    【详解】
    在第三象限内点的坐标为:(﹣1,﹣1)(答案不唯一).
    故答案为答案不唯一,如:(﹣1,﹣1),横坐标和纵坐标都是负数即可.
    12、π
    【解析】
    取的中点,取的中点,连接,,,则,故的轨迹为以为圆心,为半径的半圆弧,根据弧长公式即可得轨迹长.
    【详解】
    解:如图,取的中点,取的中点,连接,,,

    ∵在等腰中,,点在以斜边为直径的半圆上,
    ∴,
    ∵为的中位线,
    ∴,
    ∴当点沿半圆从点运动至点时,点的轨迹为以为圆心,为半径的半圆弧,
    ∴弧长,
    故答案为:.
    【点睛】
    本题考查了点的轨迹与等腰三角形的性质.解决动点问题的关键是在运动中,把握不变的等量关系(或函数关系),通过固定的等量关系(或函数关系),解决动点的轨迹或坐标问题.
    13、1
    【解析】
    ∵13份试卷成绩,结果如下:3个140分,4个1分,2个130分,2个120分,1个100分,1个80分,
    ∴第7个数是1分,
    ∴中位数为1分,
    故答案为1.
    14、1.
    【解析】
    直接根据题意得出直角边的比值,即可表示出各边长进而得出答案.
    【详解】
    如图所示:
    ∵坡度i=1:0.75,
    ∴AC:BC=1:0.75=4:3,
    ∴设AC=4x,则BC=3x,
    ∴AB==5x,
    ∵AB=20m,
    ∴5x=20,
    解得:x=4,
    故3x=1,
    故这个物体在水平方向上前进了1m.
    故答案为:1.

    【点睛】
    此题主要考查坡度的运用,需注意的是坡度是坡角的正切值,是铅直高度h和水平宽l的比,我们把斜坡面与水平面的夹角叫做坡角,若用α表示坡角,可知坡度与坡角的关系是.
    15、
    【解析】
    根据题目中的程序可以分别计算出y2和yn,从而可以解答本题.
    【详解】
    ∵y1=,∴y2===,y3=,……
    yn=.
    故答案为:.
    【点睛】
    本题考查了分式的混合运算,解答本题的关键是明确题意,用代数式表示出相应的y2和yn.
    16、12
    【解析】
    根据题意可以求得点B'的横坐标,然后根据反比例函数y=(k≠0)的图象恰好经过点B'、M,从而可以求得k的值.
    【详解】
    解:作B′C⊥y轴于点C,如图所示,

    ∵∠BAB′=90°,∠AOB=90°,AB=AB′,
    ∴∠BAO+∠ABO=90°,∠BAO+∠B′AC=90°,
    ∴∠ABO=∠BA′C,
    ∴△ABO≌△BA′C,
    ∴AO=B′C,
    ∵点A(0,6),
    ∴B′C=6,
    设点B′的坐标为(6,),
    ∵点M是线段AB'的中点,点A(0,6),
    ∴点M的坐标为(3,),
    ∵反比例函数y=(k≠0)的图象恰好经过点M,
    ∴=,
    解得,k=12,
    故答案为:12.
    【点睛】
    本题考查反比例函数图象上点的坐标特征、旋转的性质,解答本题的关键是明确题意,利用数形结合的思想解答.
    17、或.
    【解析】
    ①延长A'D交AB于H,则A'H⊥AB,然后根据勾股定理算出AB,推断出△ADH∽△ABC,即可解答此题
    ②同①的解题思路一样
    【详解】
    解:分两种情况:
    ①如图1所示:
    设AD=x,延长A'D交AB于H,则A'H⊥AB,
    ∴∠AHD=∠C=90°,
    由勾股定理得:AB==13,
    ∵∠A=∠A,
    ∴△ADH∽△ABC,
    ∴,即,
    解得:DH=x,AH=x,
    ∵E是AB的中点,
    ∴AE=AB=,
    ∴HE=AE﹣AH=﹣x,
    由折叠的性质得:A'D=AD=x,A'E=AE=,
    ∴sin∠A=sin∠A'= ,
    解得:x= ;
    ②如图2所示:设AD=A'D=x,
    ∵A'D⊥AB,
    ∴∠A'HE=90°,
    同①得:A'E=AE=,DH=x,
    ∴A'H=A'D﹣DH=x﹣=x,
    ∴cos∠A=cos∠A'= ,
    解得:x= ;
    综上所述,AD的长为 或.
    故答案为 或.


    【点睛】
    此题考查了勾股定理,三角形相似,关键在于做辅助线

    三、解答题(共7小题,满分69分)
    18、 (1);(2).
    【解析】
    (1)一共4个小球,则任取一个球,共有4种不同结果,摸出球上的汉字刚好是“美”的概率为;
    (2)列表或画出树状图,根据一共出现的等可能的情况及恰能组成“美丽”或“光明”的情况进行解答即可.
    【详解】
    (1) ∵“美”、“丽”、“光”、“明”的四个小球,任取一球,共有4种不同结果,
    ∴任取一个球,摸出球上的汉字刚好是“美”的概率P=
    (2)列表如下:






    ----
    (美,丽)
    (光,美)
    (美,明)

    (美,丽)
    ----
    (光,丽)
    (明,丽)

    (美,光)
    (光,丽)
    ----
    (光,明)

    (美,明)
    (明,丽)
    (光,明)
    -------
    根据表格可得:共有12中等可能的结果,其中恰能组成“美丽”或“光明”共有4种,故
    取出的两个球上的汉字恰能组成“美丽”或“光明”的概率.
    【点睛】
    此题考查的是用列表法或树状图法求概率与不等式的性质.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.
    19、 (1)证明见解析;(2)BC=1.
    【解析】
    (1)连接OB,根据切线的性质和圆周角定理求出∠PBO=∠ABC=90°,即可求出答案;
    (2)求出△ABC∽△PBO,得出比例式,代入求出即可.
    【详解】
    (1)连接OB,

    ∵PB是⊙O的切线,∴PB⊥OB,∴∠PBA+∠OBA=90°,
    ∵AC是⊙O的直径,∴∠ABC=90°,∠C+∠BAC=90°,
    ∵OA=OB,∴∠OBA=∠BAO,∴∠PBA=∠C;
    (2)∵⊙O的半径是3 ,
    ∴OB=3,AC=6,∵OP∥BC,∴∠BOP=∠OBC,
    ∵OB=OC,∴∠OBC=∠C,∴∠BOP=∠C,∵∠ABC=∠PBO=90°,
    ∴△ABC∽△PBO,∴=,∴=,∴BC=1.
    【点睛】
    本题考查平行线的性质,切线的性质,相似三角形的性质和判定,圆周角定理等知识点,能综合运用知识点进行推理是解题关键.
    20、(1)1 ;(1) y=x1﹣4x+1或y=x1+6x+1.
    【解析】
    (1)解方程求出点A的坐标,根据勾股定理计算即可;
    (1)设新抛物线对应的函数表达式为:y=x1+bx+1,根据二次函数的性质求出点C′的坐标,根据题意求出直线CC′的解析式,代入计算即可.
    【详解】
    解:(1)由x1﹣4=0得,x1=﹣1,x1=1,
    ∵点A位于点B的左侧,
    ∴A(﹣1,0),
    ∵直线y=x+m经过点A,
    ∴﹣1+m=0,
    解得,m=1,
    ∴点D的坐标为(0,1),
    ∴AD==1;
    (1)设新抛物线对应的函数表达式为:y=x1+bx+1,
    y=x1+bx+1=(x+)1+1﹣,
    则点C′的坐标为(﹣,1﹣),
    ∵CC′平行于直线AD,且经过C(0,﹣4),
    ∴直线CC′的解析式为:y=x﹣4,
    ∴1﹣=﹣﹣4,
    解得,b1=﹣4,b1=6,
    ∴新抛物线对应的函数表达式为:y=x1﹣4x+1或y=x1+6x+1.
    【点睛】
    本题考查的是抛物线与x轴的交点、待定系数法求函数解析式,掌握二次函数的性质、抛物线与x轴的交点的求法是解题的关键.
    21、(1)画图见解析,(2,-2);(2)画图见解析,(1,0);
    【解析】
    (1)将△ABC向下平移4个单位长度得到的△A1B1C1,如图所示,找出所求点坐标即可;
    (2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,如图所示,找出所求点坐标即可.
    【详解】
    (1)如图所示,画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,-2);

    (2)如图所示,以B为位似中心,画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是(1,0),
    故答案为(1)(2,-2);(2)(1,0)
    【点睛】
    此题考查了作图-位似变换与平移变换,熟练掌握位似变换与平移变换的性质是解本题的关键.
    22、(1)反比例函数解析式为y=﹣,一次函数的解析式为y=﹣x﹣1;(1)6;(3)x<﹣4或0<x<1.
    【解析】
    试题分析:(1)先把点A的坐标代入反比例函数解析式,即可得到m=﹣8,再把点B的坐标代入反比例函数解析式,即可求出n=1,然后利用待定系数法确定一次函数的解析式;
    (1)先求出直线y=﹣x﹣1与x轴交点C的坐标,然后利用S△AOB=S△AOC+S△BOC进行计算;
    (3)观察函数图象得到当x<﹣4或0<x<1时,一次函数的图象在反比例函数图象上方,据此可得不等式的解集.
    试题解析:(1)把A(﹣4,1)代入,得m=1×(﹣4)=﹣8,所以反比例函数解析式为,把B(n,﹣4)代入,得﹣4n=﹣8,解得n=1,把A(﹣4,1)和B(1,﹣4)代入y=kx+b,得:,解得:,所以一次函数的解析式为y=﹣x﹣1;
    (1)y=﹣x﹣1中,令y=0,则x=﹣1,即直线y=﹣x﹣1与x轴交于点C(﹣1,0),∴S△AOB=S△AOC+S△BOC=×1×1+×1×4=6;
    (3)由图可得,不等式的解集为:x<﹣4或0<x<1.

    考点:反比例函数与一次函数的交点问题;待定系数法求一次函数解析式.
    23、(1).(2)①判断:.理由见解析;②或.
    【解析】
    (1)利用代点法可以求出参数 ;
    (2)①当时,即点P的坐标为,即可求出点的坐标,于是得出;
    ②根据①中的情况,可知或再结合图像可以确定的取值范围;
    【详解】
    解:(1)∵函数的图象经过点,
    ∴将点代入,即 ,得:
    ∵直线与轴交于点,
    ∴将点代入,即 ,得:
    (2)①判断: .理由如下:
    当时,点P的坐标为,如图所示:

    ∴点C的坐标为 ,点D的坐标为
    ∴ , .
    ∴.
    ②由①可知当时
    所以由图像可知,当直线往下平移的时也符合题意,即 ,
    得;
    当时,点P的坐标为
    ∴点C的坐标为 ,点D的坐标为
    ∴ ,

    当 时,即,也符合题意,
    所以 的取值范围为:或 .
    【点睛】
    本题主要考查了反比例函数和一次函数,熟练求反比例函数和一次函数解析式的方法、坐标与线段长度的转化和数形结合思想是解题关键.
    24、(1)A(﹣1,0),B(3,0),y=﹣x﹣;
    (2)①A′(t﹣1, t);②A′BEF为菱形,见解析;
    (3)存在,P点坐标为(,)或(,﹣).
    【解析】
    (1)通过解方程﹣x2+x+=0得A(−1,0),B(3,0),然后利用待定系数法确定直线l的解析式;
    (2)①作A′H⊥x轴于H,如图2,利用OA=1,OD=得到∠OAD=60°,再利用平移和对称的性质得到EA=EA′=t,∠A′EF=∠AEF=60°,然后根据含30度的直角三角形三边的关系表示出A′H,EH即可得到A′的坐标;
    ②把A′(t−1,t)代入y=−x2+x+得−(t−1)2+(t−1)+=t,解方程得到t=2,此时A′点的坐标为(2,),E(1,0),然后通过计算得到AF=BE=2,A′F∥BE,从而判断四边形A′BEF为平行四边形,然后加上EF=BE可判定四边形A′BEF为菱形;
    (3)讨论:当A′B⊥BE时,四边形A′BEP为矩形,利用点A′和点B的横坐标相同得到t−1=3,解方程求出t得到A′(3,),再利用矩形的性质可写出对应的P点坐标;当A′B⊥EA′,如图4,四边形A′BPE为矩形,作A′Q⊥x轴于Q,先确定此时A′点的坐标,然后利用点的平移确定对应P点坐标.
    【详解】
    (1)当y=0时,﹣x2+x+=0,解得x1=﹣1,x2=3,则A(﹣1,0),B(3,0),
    设直线l的解析式为y=kx+b,
    把A(﹣1,0),D(0,﹣)代入得,解得,
    ∴直线l的解析式为y=﹣x﹣;
    (2)①作A′H⊥x轴于H,如图,

    ∵OA=1,OD=,
    ∴∠OAD=60°,
    ∵EF∥AD,
    ∴∠AEF=60°,
    ∵点A 关于直线l的对称点为A′,
    ∴EA=EA′=t,∠A′EF=∠AEF=60°,
    在Rt△A′EH中,EH=EA′=t,A′H=EH=t,
    ∴OH=OE+EH=t﹣1+t=t﹣1,
    ∴A′(t﹣1, t);
    ②把A′(t﹣1, t)代入y=﹣x2+x+得﹣(t﹣1)2+(t﹣1)+=t,
    解得t1=0(舍去),t2=2,
    ∴当点A′落在抛物线上时,直线l的运动时间t的值为2;
    此时四边形A′BEF为菱形,理由如下:
    当t=2时,A′点的坐标为(2,),E(1,0),
    ∵∠OEF=60°
    ∴OF=OE=,EF=2OE=2,
    ∴F(0,),
    ∴A′F∥x轴,
    ∵A′F=BE=2,A′F∥BE,
    ∴四边形A′BEF为平行四边形,
    而EF=BE=2,
    ∴四边形A′BEF为菱形;
    (3)存在,如图:

    当A′B⊥BE时,四边形A′BEP为矩形,则t﹣1=3,解得t=,则A′(3,),
    ∵OE=t﹣1=,
    ∴此时P点坐标为(,);
    当A′B⊥EA′,如图,四边形A′BPE为矩形,作A′Q⊥x轴于Q,

    ∵∠AEA′=120°,
    ∴∠A′EB=60°,
    ∴∠EBA′=30°
    ∴BQ=A′Q=•t=t,
    ∴t﹣1+t=3,解得t=,
    此时A′(1,),E(,0),
    点A′向左平移个单位,向下平移个单位得到点E,则点B(3,0)向左平移个单位,向下平移个单位得到点P,则P(,﹣),
    综上所述,满足条件的P点坐标为(,)或(,﹣).
    【点睛】
    本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、菱形的判定和矩形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质.

    相关试卷

    广西北部湾经济区2021-2022学年中考联考数学试卷含解析: 这是一份广西北部湾经济区2021-2022学年中考联考数学试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,已知,若,则x-y的正确结果是,如图所示等内容,欢迎下载使用。

    北京丰台市级名校2021-2022学年中考数学全真模拟试卷含解析: 这是一份北京丰台市级名校2021-2022学年中考数学全真模拟试卷含解析,共19页。试卷主要包含了按一定规律排列的一列数依次为,估计﹣1的值在,下列各数中,比﹣1大1的是等内容,欢迎下载使用。

    2022年广西北部湾经济区市级名校中考数学最后冲刺模拟试卷含解析: 这是一份2022年广西北部湾经济区市级名校中考数学最后冲刺模拟试卷含解析,共22页。试卷主要包含了答题时请按要求用笔,按一定规律排列的一列数依次为等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map