初三一轮复习平行四边形矩形菱形正方形(中下)-无答案学案
展开平行四边形,矩形,菱形,正方形复习
温习理解
一、四边形的内角和定理及外角和定理
四边形的内角和定理:四边形的内角和等于360°。四边形的外角和定理:四边形的外角和等于360°。
推论:多边形的内角和定理:n边形的内角和等于180°;
多边形的外角和定理:任意多边形的外角和等于360°。
二、平行四边形
1、平行四边形的概念:两组对边分别平行的四边形叫做平行四边形。
2、平行四边形的性质
(1)平行四边形的邻角互补,对角相等。(2)平行四边形的对边平行且相等。
推论:夹在两条平行线间的平行线段相等。
(3)平行四边形的对角线互相平分。
(4)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积。
3、平行四边形的判定
(1)定义:两组对边分别平行的四边形是平行四边形
(2)定理1:两组对角分别相等的四边形是平行四边形
(3)定理2:两组对边分别相等的四边形是平行四边形
(4)定理3:对角线互相平分的四边形是平行四边形
(5)定理4:一组对边平行且相等的四边形是平行四边形
三、矩形
1、矩形的概念:有一个角是直角的平行四边形叫做矩形。
2、矩形的性质(1)具有平行四边形的一切性质(2)矩形的四个角都是直角
(3)矩形的对角线相等(4)矩形是轴对称图形
3、矩形的判定
(1)定义:有一个角是直角的平行四边形是矩形
(2)定理1:有三个角是直角的四边形是矩形
(3)定理2:对角线相等的平行四边形是矩形
四、菱形
1、菱形的概念:有一组邻边相等的平行四边形叫做菱形
2、菱形的性质
(1)具有平行四边形的一切性质(2)菱形的四条边相等
(3)菱形的对角线互相垂直,并且每一条对角线平分一组对角
(4)菱形是轴对称图形
3、菱形的判定
(1)定义:有一组邻边相等的平行四边形是菱形
(2)定理1:四边都相等的四边形是菱形
(3)定理2:对角线互相垂直的平行四边形是菱形
4、菱形的面积:S菱形=底边长×高=两条对角线乘积的一半
五、正方形
1、正方形的概念:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
2、正方形的性质(1)具有平行四边形、矩形、菱形的一切性质
(2)正方形的四个角都是直角,四条边都相等
(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角
(4)正方形是轴对称图形,有4条对称轴
(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形
(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。
六、梯形
1、梯形的相关概念:一组对边平行而另一组对边不平行的四边形叫做梯形。
2、等腰梯形的性质(1)等腰梯形的两腰相等,两底平行。
(2)等腰梯形的对角线相等。
(3)等腰梯形是轴对称图形,它只有一条对称轴,即两底的垂直平分线。
3、等腰梯形的判定
(1)定义:两腰相等的梯形是等腰梯形
(2)定理:在同一底上的两个角相等的梯形是等腰梯形
(3)对角线相等的梯形是等腰梯形。
4、梯形中位线定理:梯形中位线平行于两底,并且等于两底和的一半。
【典例分类】
类型一:平行四边形
1. (2018·浙江宁波·4分)已知正多边形的一个外角等于40°,那么这个正多边形的边数为( )
A.6 B.7 C.8 D.9
2. (2018四川省泸州市3分)如图,▱ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则▱ABCD的周长为( )
A.20 B.16 C.12 D.8
3. (2018·浙江省台州·4分)如图,在▱ABCD中,AB=2,BC=3.以点C为圆心,适当长为半径画弧,交BC于点P,交CD于点Q,再分别以点P,Q为圆心,大于PQ的长为半径画弧,两弧相交于点N,射线CN交BA的延长线于点E,则AE的长是( )
A. B.1 C. D.
4. 如图,在▱ABCD中,分别以AB、AD为边向外作等边△ABE、△ADF,延长CB交AE于点G,点G在点A、E之间,连接CE、CF,EF,则以下四个结论一定正确的是( )
①△CDF≌△EBC;②∠CDF=∠EAF;③△ECF是等边三角形;④CG⊥AE.
5. (2018•山东淄博•4分)在如图所示的平行四边形ABCD中,AB=2,AD=3,将△ACD沿对角线AC折叠,点D落在△ABC所在平面内的点E处,且AE过BC的中点O,则△ADE的周长等于 .
6.(2018•株洲市•3分)如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=,在DB的延长线上取一点P,满足∠ABD=∠MAP+∠PAB,则AP=_____.
7. (2018•湖北恩施•8分)如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,AD交BE于O.
求证:AD与BE互相平分.
8. (2018四川省眉山市15分 ) 如图①,在四边形ABCD中,AC⊥BD于点E,AB=AC=BD,点M为BC中点,N为线段AM上的点,且MB=MN.
(1)求证:BN平分∠ABE;
(2)若BD=1,连结DN,当四边形DNBC为平行四边形时,求线段BC的长;
(3)如图②,若点F为AB的中点,连结FN、FM,求证:△MFN∽△BDC.
类型二:矩形
1. (2018•四川凉州•3分)如图将矩形ABCD沿对角线BD折叠,使C落在C′处,BC′交AD于点E,则下到结论不一定成立的是( )
A. AD=BC′ B.∠EBD=∠EDB C.△ABE∽△CBD D.sin∠ABE=
2. (2018·台湾·分)如图1的矩形ABCD中,有一点E在AD上,今以BE为折线将A点往右折,如图2所示,再作过A点且与CD垂直的直线,交CD于F点,如图3所示,若AB=6,BC=13,∠BEA=60°,则图3中AF的长度为何?( )
A.2 B.4 C.2 D.4
3. (2018•莱芜•3分)如图,在矩形ABCD中,∠ADC的平分线与AB交于E,点F在DE的延长线上,∠BFE=90°,连接AF、CF,CF与AB交于G.有以下结论:
①AE=BC;②AF=CF;③BF2=FG•FC;④EG•AE=BG•AB
其中正确的个数是( )
A.1 B.2 C.3 D.4
4. 已知正方形ABCD边长为2,E是BC边上一点,将此正方形的一只角DCE沿直线DE折叠,使C点恰好落在对角线BD上,则BE的长等于 .
5. 如图,面积为8的矩形ABOC的边OB、OC分别在x轴、y轴的正半轴上,点A在双曲线y=的图象上,且AC=2.
(1)求k值;
(2)矩形BDEF,BD在x轴的正半轴上,F在AB上,且BD=OC,BF=OB.双曲线交DE于M点,交EF于N点,求△MEN的面积.
6. (2017.江苏宿迁)如图,在矩形纸片ABCD中,已知AB=1,BC=,点E在边CD上移动,连接AE,将多边形ABCE沿直线AE翻折,得到多边形AB′C′E,点B、C的对应点分别为点B′、C′.
(1)当B′C′恰好经过点D时(如图1),求线段CE的长;
(2)若B′C′分别交边AD,CD于点F,G,且∠DAE=22.5°(如图2),求△DFG的面积;
(3)在点E从点C移动到点D的过程中,求点C′运动的路径长.
类型三:菱形
1. (2018·湖北省孝感·3分)如图,菱形ABCD的对角线AC,BD相交于点O,AC=10,BD=24,则菱形ABCD的周长为( )
A.52 B.48 C.40 D.20
2. (2018·新疆生产建设兵团·5分)如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是( )
A. B.1 C. D.2
3. (2018年江苏省宿迁)如图,菱形ABCD的对角线AC、BD相交于点O,点E为边CD的中点,若菱形ABCD的周长为16,∠BAD=60°,则△OCE的面积是( )。
A. B. 2 C. D. 4
4. (2018·广东·3分)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为( )
A. B. C. D.
5. (2018•湖北荆门•3分)如图,在平面直角坐标系xOy中,函数y=(k>0,x>0)的图象经过菱形OACD的顶点D和边AC的中点E,若菱形OACD的边长为3,则k的值为 .
6. (2018·四川自贡·4分)如图,在△ABC中,AC=BC=2,AB=1,将它沿AB翻折得到△ABD,则四边形ADBC的形状是 菱 形,点P、E、F分别为线段AB、AD、DB的任意点,则PE+PF的最小值是 .
7. (2018·湖北省宜昌·8分)如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.
(1)求证:四边形ABFC是菱形;
(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.
8. (2018•江苏盐城•10分)在正方形 中,对角线 所在的直线上有两点 、 满足 ,连接 、 、 、 ,如图所示.
(1)求证: ;
(2)试判断四边形 的形状,并说明理由.
9. (2018·山东泰安·11分)如图,△ABC中,D是AB上一点,DE⊥AC于点E,F是AD的中点,FG⊥BC于点G,与DE交于点H,若FG=AF,AG平分∠CAB,连接GE,CD.
(1)求证:△ECG≌△GHD;
(2)小亮同学经过探究发现:AD=AC+EC.请你帮助小亮同学证明这一结论.
(3)若∠B=30°,判定四边形AEGF是否为菱形,并说明理由.
类型四:正方形
1. (2017贵州)如图,正方形ABCD中,E为AB中点,FE⊥AB,AF=2AE,FC交BD于O,则∠DOC的度数为( )
A.60° B.67.5° C.75° D.54°
2. (2017山东泰安)如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E.若AB=12,BM=5,则DE的长为( )
A.18 B. C. D.
3. (2018·天津·3分)如图,在正方形中,,分别为,的中点,为对角线上的一个动点,则下列线段的长等于最小值的是( )
- B. C. D.
4. (2017•新疆)如图,在边长为6cm的正方形ABCD中,点E、F、G、H分别从点A、B、C、D同时出发,均以1cm/s的速度向点B、C、D、A匀速运动,当点E到达点B时,四个点同时停止运动,在运动过程中,当运动时间为 3 s时,四边形EFGH的面积最小,其最小值是 cm2.
5. (2018·浙江舟山·6分)如图,等边△AEF的顶点E,F在矩形ABCD的边BC,CD上,且∠CEF=45°。
求证:矩形ABCD是正方形
6. (2018·山东潍坊·8分)如图,点M是正方形ABCD边CD上一点,连接AM,作DE⊥AM于点E,BF⊥AM于点F,连接BE.
(1)求证:AE=BF;
(2)已知AF=2,四边形ABED的面积为24,求∠EBF的正弦值.
7. (2018•株洲市)如图,在Rt△ABM和Rt△ADN的斜边分别为正方形的边AB和AD,其中AM=AN.
(1)求证:Rt△ABM≌Rt△AND
(2)线段MN与线段AD相交于T,若AT=,求的值
初三一轮复习中下(三视图,平移,对称旋转 )-无答案学案: 这是一份初三一轮复习中下(三视图,平移,对称旋转 )-无答案学案,共13页。学案主要包含了图形的平移与旋转,中心对称与中心对称图形,填空题等内容,欢迎下载使用。
初三一轮复习平行四边形矩形菱形正方形学案: 这是一份初三一轮复习平行四边形矩形菱形正方形学案,共26页。学案主要包含了四边形的内角和定理及外角和定理,矩形,菱形,正方形,梯形等内容,欢迎下载使用。
平行四边形,矩形,菱形,正方形(中下)学案(无答案): 这是一份平行四边形,矩形,菱形,正方形(中下)学案(无答案),共10页。学案主要包含了平行四边形,矩形,菱形,正方形等内容,欢迎下载使用。