2021-2022学年黑龙江省大庆市肇源县第四中学中考数学押题试卷含解析
展开1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(共10小题,每小题3分,共30分)
1.的绝对值是( )
A.B.C.D.
2.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是( )
A.=2B.=2
C.=2D.=2
3.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( )
A. B. C.D.
4.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是( )
A.∠ABD=∠EB.∠CBE=∠CC.AD∥BCD.AD=BC
5.已知二次函数y=﹣(x﹣h)2+1(为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最大值为﹣5,则h的值为( )
A.3﹣或1+B.3﹣或3+
C.3+或1﹣D.1﹣或1+
6.如图,在平行四边形ABCD中,AE:EB=1:2,E为AB上一点,AC与DE相交于点F, S△AEF=3,则S△FCD为( )
A.6B.9C.12D.27
7.下列各式:①a0=1 ②a2·a3=a5 ③ 2–2= –④–(3-5)+(–2)4÷8×(–1)=0⑤x2+x2=2x2,其中正确的是 ( )
A.①②③B.①③⑤C.②③④D.②④⑤
8.一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球、3个白球.从布袋中一次性摸出两个球,则摸出的两个球中至少有一个红球的概率是( )
A.B.C.D.
9.如图,菱形ABCD的对角线交于点O,AC=8cm,BD=6cm,则菱形的高为( )
A. cmB.cmC.cmD. cm
10.若正多边形的一个内角是150°,则该正多边形的边数是( )
A.6 B.12 C.16 D.18
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,在△ABC中,D,E分别是AB,AC边上的点,DE∥BC.若AD=6,BD=2,DE=3,则BC=______.
12.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为,随机取出一个小球后不放回,再随机取出一个小球,则两次取出的小球标号的和等于4的概率是_____.
13.已知a、b满足a2+b2﹣8a﹣4b+20=0,则a2﹣b2=_____.
14.如图,在平面直角坐标系中,函数y=(k>0)的图象经过点A(1,2)、B两点,过点A作x轴的垂线,垂足为C,连接AB、BC.若三角形ABC的面积为3,则点B的坐标为___________.
15.在△ABC中,∠A:∠B:∠C=1:2:3,它的最小边的长是2cm,则它的最大边的长是_____cm.
16.在一条笔直的公路上有A、B、C三地,C地位于A、B两地之间.甲车从A地沿这条公路匀速驶向C地,乙车从B地沿这条公路匀速驶向A地,在甲、乙行驶过程中,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图所示.则当乙车到达A地时,甲车已在C地休息了_____小时.
三、解答题(共8题,共72分)
17.(8分)
18.(8分)在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A、B、C,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.
19.(8分)如图,在⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,在AB的延长线上有点E,且EF=ED.
(1)求证:DE是⊙O的切线;
(2)若tanA=,探究线段AB和BE之间的数量关系,并证明;
(3)在(2)的条件下,若OF=1,求圆O的半径.
20.(8分)如图1,已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,使点A、C分别在DG和DE上,连接AE,BG.试猜想线段BG和AE的数量关系是_____;将正方形DEFG绕点D逆时针方向旋转α(0°<α≤360°),
①判断(1)中的结论是否仍然成立?请利用图2证明你的结论;
②若BC=DE=4,当AE取最大值时,求AF的值.
21.(8分)如图,点D,C在BF上,AB∥EF,∠A=∠E,BD=CF.求证:AB=EF.
22.(10分)已知PA与⊙O相切于点A,B、C是⊙O上的两点
(1)如图①,PB与⊙O相切于点B,AC是⊙O的直径若∠BAC=25°;求∠P的大小
(2)如图②,PB与⊙O相交于点D,且PD=DB,若∠ACB=90°,求∠P的大小
23.(12分)如图,已知:正方形ABCD,点E在CB的延长线上,连接AE、DE,DE与边AB交于点F,FG∥BE交AE于点G.
(1)求证:GF=BF;
(2)若EB=1,BC=4,求AG的长;
(3)在BC边上取点M,使得BM=BE,连接AM交DE于点O.求证:FO•ED=OD•EF.
24.如图,在直角坐标系中,矩形的顶点与坐标原点重合,顶点分别在坐标轴的正半轴上, ,点在直线上,直线与折线有公共点.点的坐标是 ;若直线经过点,求直线的解析式;对于一次函数,当随的增大而减小时,直接写出的取值范围.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
根据数轴上某个数与原点的距离叫做这个数的绝对值的定义即可解决.
【详解】
在数轴上,点到原点的距离是,
所以,的绝对值是,
故选C.
【点睛】
错因分析 容易题,失分原因:未掌握绝对值的概念.
2、A
【解析】
分析:设原计划每天施工x米,则实际每天施工(x+30)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.
详解:设原计划每天施工x米,则实际每天施工(x+30)米,
根据题意,可列方程:=2,
故选A.
点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.
3、A
【解析】
首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.
【详解】
画树状图如下:
由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,
∴两次都摸到黄球的概率为,
故选A.
【点睛】
此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.
4、C
【解析】
根据旋转的性质得,∠ABD=∠CBE=60°, ∠E=∠C,
则△ABD为等边三角形,即 AD=AB=BD,得∠ADB=60°因为∠ABD=∠CBE=60°,则∠CBD=60°,所以,∠ADB=∠CBD,得AD∥BC.故选C.
5、C
【解析】
∵当x<h时,y随x的增大而增大,当x>h时,y随x的增大而减小,
∴①若h<1≤x≤3,x=1时,y取得最大值-5,
可得:-(1-h)2+1=-5,
解得:h=1-或h=1+(舍);
②若1≤x≤3<h,当x=3时,y取得最大值-5,
可得:-(3-h)2+1=-5,
解得:h=3+或h=3-(舍).
综上,h的值为1-或3+,
故选C.
点睛:本题主要考查二次函数的性质和最值,根据二次函数的增减性和最值分两种情况讨论是解题的关键.
6、D
【解析】
先根据AE:EB=1:2得出AE:CD=1:3,再由相似三角形的判定定理得出△AEF∽△CDF,由相似三角形的性质即可得出结论.
【详解】
解:∵四边形ABCD是平行四边形,AE:EB=1:2,
∴AE:CD=1:3,
∵AB∥CD,
∴∠EAF=∠DCF,
∵∠DFC=∠AFE,
∴△AEF∽△CDF,
∵S△AEF=3,
∴==()2,
解得S△FCD=1.
故选D.
【点睛】
本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.
7、D
【解析】
根据实数的运算法则即可一一判断求解.
【详解】
①有理数的0次幂,当a=0时,a0=0;②为同底数幂相乘,底数不变,指数相加,正确;③中2–2= ,原式错误;④为有理数的混合运算,正确;⑤为合并同类项,正确.
故选D.
8、D
【解析】
画出树状图得出所有等可能的情况数,找出恰好是两个红球的情况数,即可求出所求的概率.
【详解】
画树状图如下:
一共有20种情况,其中两个球中至少有一个红球的有14种情况,
因此两个球中至少有一个红球的概率是:.
故选:D.
【点睛】
此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.
9、B
【解析】
试题解析:∵菱形ABCD的对角线
根据勾股定理,
设菱形的高为h,
则菱形的面积
即
解得
即菱形的高为cm.
故选B.
10、B
【解析】设多边形的边数为n,则有(n-2)×180°=n×150°,解得:n=12,
故选B.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、1
【解析】
根据已知DE∥BC得出=进而得出BC的值
【详解】
∵DE∥BC,AD=6,BD=2,DE=3,
∴△ADE∽△ABC,
∴,
∴,
∴BC=1,
故答案为1.
【点睛】
此题考查了平行线分线段成比例的性质,解题的关键在于利用三角形的相似求三角形的边长.
12、
【解析】
试题解析:画树状图得:
由树状图可知:所有可能情况有12种,其中两次摸出的小球标号的和等于4的占2种,所以其概率=,
故答案为.
13、1
【解析】
利用配方法把原式化为平方和的形式,根据偶次方的非负性求出a、b,计算即可.
【详解】
a2+b2﹣8a﹣4b+20=0,
a2﹣8a+16+b2﹣4b+4=0,
(a﹣4)2+(b﹣2)2=0
a﹣4=0,b﹣2=0,
a=4,b=2,
则a2﹣b2=16﹣4=1,
故答案为1.
【点睛】
本题考查了配方法的应用、非负数的性质,掌握完全平方公式、偶次方的非负性是解题的关键.
14、(4,).
【解析】
由于函数y=(x>0常数k>0)的图象经过点A(1,1),把(1,1)代入解析式求出k=1,然后得到AC=1.设B点的横坐标是m,则AC边上的高是(m-1),根据三角形的面积公式得到关于m的方程,从而求出,然后把m的值代入y=,即可求得B的纵坐标,最后就求出了点B的坐标.
【详解】
∵函数y=(x>0、常数k>0)的图象经过点A(1,1),
∴把(1,1)代入解析式得到1=,
∴k=1,
设B点的横坐标是m,
则AC边上的高是(m-1),
∵AC=1
∴根据三角形的面积公式得到×1•(m-1)=3,
∴m=4,把m=4代入y=,
∴B的纵坐标是,
∴点B的坐标是(4,).
故答案为(4,).
【点睛】
解答本题的关键是根据已知坐标系中点的坐标,可以表示图形中线段的长度.根据三角形的面积公式即可解答.
15、1.
【解析】
根据在△ABC中,∠A:∠B:∠C=1:2:3,三角形内角和等于180°可得∠A,∠B,∠C的度数,它的最小边的长是2cm,从而可以求得最大边的长.
【详解】
∵在△ABC中,∠A:∠B:∠C=1:2:3,
∴
∵最小边的长是2cm,
∴a=2.
∴c=2a=1cm.
故答案为:1.
【点睛】
考查含30度角的直角三角形的性质,掌握30度角所对的直角边等于斜边的一半是解题的关键.
16、2.1.
【解析】
根据题意和函数图象中的数据可以求得乙车的速度和到达A地时所用的时间,从而可以解答本题.
【详解】
由题意可得,
甲车到达C地用时4个小时,
乙车的速度为:200÷(3.1﹣1)=80km/h,
乙车到达A地用时为:(200+240)÷80+1=6.1(小时),
当乙车到达A地时,甲车已在C地休息了:6.1﹣4=2.1(小时),
故答案为:2.1.
【点睛】
本题考查了一次函数的图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
三、解答题(共8题,共72分)
17、﹣2<x<2.
【解析】
分别解不等式,进而得出不等式组的解集.
【详解】
解①得:x<2
解②得:x>﹣2.
故不等式组的解集为:﹣2<x<2.
【点睛】
本题主要考查了解一元一次不等式组,正确掌握不等式组的解法是解题的关键.
18、.
【解析】
试题分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲、乙抽中同一篇文章,再利用概率公式求解即可求得答案.
试题解析:解:如图:
所有可能的结果有9种,甲、乙抽中同一篇文章的情况有3种,概率为=.
点睛:本题主要考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.
19、(1)答案见解析;(2)AB=1BE;(1)1.
【解析】
试题分析:(1)先判断出∠OCF+∠CFO=90°,再判断出∠OCF=∠ODF,即可得出结论;
(2)先判断出∠BDE=∠A,进而得出△EBD∽△EDA,得出AE=2DE,DE=2BE,即可得出结论;
(1)设BE=x,则DE=EF=2x,AB=1x,半径OD=x,进而得出OE=1+2x,最后用勾股定理即可得出结论.
试题解析:(1)证明:连结OD,如图.∵EF=ED,∴∠EFD=∠EDF.∵∠EFD=∠CFO,∴∠CFO=∠EDF.∵OC⊥OF,∴∠OCF+∠CFO=90°.∵OC=OD,∴∠OCF=∠ODF,∴∠ODC+∠EDF=90°,即∠ODE=90°,∴OD⊥DE.∵点D在⊙O上,∴DE是⊙O的切线;
(2)线段AB、BE之间的数量关系为:AB=1BE.证明如下:
∵AB为⊙O直径,∴∠ADB=90°,∴∠ADO=∠BDE.∵OA=OD,∴∠ADO=∠A,∴∠BDE=∠A,而∠BED=∠DEA,∴△EBD∽△EDA,∴.∵Rt△ABD中,tanA==,∴=,
∴AE=2DE,DE=2BE,∴AE=4BE,∴AB=1BE;
(1)设BE=x,则DE=EF=2x,AB=1x,半径OD=x.∵OF=1,∴OE=1+2x.
在Rt△ODE中,由勾股定理可得:(x)2+(2x)2=(1+2x)2,∴x=﹣(舍)或x=2,∴圆O的半径为1.
点睛:本题是圆的综合题,主要考查了切线的判定和性质,等腰三角形的性质,锐角三角函数,相似三角形的判定和性质,勾股定理,判断出△EBD∽△EDA是解答本题的关键.
20、(1)BG=AE.(2)①成立BG=AE.证明见解析.②AF=.
【解析】
(1)由等腰直角三角形的性质及正方形的性质就可以得出△ADE≌△BDG就可以得出结论;
(2)①如图2,连接AD,由等腰直角三角形的性质及正方形的性质就可以得出△ADE≌△BDG就可以得出结论;
②由①可知BG=AE,当BG取得最大值时,AE取得最大值,由勾股定理就可以得出结论.
【详解】
(1)BG=AE.
理由:如图1,∵△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点,
∴AD⊥BC,BD=CD,
∴∠ADB=∠ADC=90°.
∵四边形DEFG是正方形,
∴DE=DG.
在△BDG和△ADE中,
BD=AD,∠BDG=∠ADE,GD=ED,
∴△ADE≌△BDG(SAS),
∴BG=AE.
故答案为BG=AE;
(2)①成立BG=AE.
理由:如图2,连接AD,
∵在Rt△BAC中,D为斜边BC中点,
∴AD=BD,AD⊥BC,
∴∠ADG+∠GDB=90°.
∵四边形EFGD为正方形,
∴DE=DG,且∠GDE=90°,
∴∠ADG+∠ADE=90°,
∴∠BDG=∠ADE.
在△BDG和△ADE中,
BD=AD,∠BDG=∠ADE,GD=ED,
∴△BDG≌△ADE(SAS),
∴BG=AE;
②∵BG=AE,
∴当BG取得最大值时,AE取得最大值.
如图3,当旋转角为270°时,BG=AE.
∵BC=DE=4,
∴BG=2+4=6.
∴AE=6.
在Rt△AEF中,由勾股定理,得
AF= =,
∴AF=2 .
【点睛】
本题考查的知识点是全等三角形的判定与性质及勾股定理及正方形的性质和等腰直角三角形,解题的关键是熟练的掌握全等三角形的判定与性质及勾股定理以及正方形的性质和等腰直角三角形.
21、见解析
【解析】
试题分析:依据题意,可通过证△ABC≌△EFD来得出AB=EF的结论,两三角形中,已知的条件有AB∥EF即∠B=∠F,∠A=∠E,BD=CF,即BC=DF;可根据AAS判定两三角形全等解题.
证明:∵AB∥EF,
∴∠B=∠F.
又∵BD=CF,
∴BC=FD.
在△ABC与△EFD中,
∴△ABC≌△EFD(AAS),
∴AB=EF.
22、(1)∠P=50°;(2)∠P=45°.
【解析】
(1)连接OB,根据切线长定理得到PA=PB,∠PAO=∠PBO=90°,根据三角形内角和定理计算即可;
(2)连接AB、AD,根据圆周角定理得到∠ADB=90°,根据切线的性质得到AB⊥PA,根据等腰直角三角形的性质解答.
【详解】
解:(1)如图①,连接OB.
∵PA、PB与⊙O相切于A、B点,
∴PA=PB,
∴∠PAO=∠PBO=90°
∴∠PAB=∠PBA,
∵∠BAC=25°,
∴∠PBA=∠PAB=90°一∠BAC=65°
∴∠P=180°-∠PAB-∠PBA=50°;
(2)如图②,连接AB、AD,
∵∠ACB=90°,
∴AB是的直径,∠ADB=90·
∵PD=DB,
∴PA=AB.
∵PA与⊙O相切于A点
∴AB⊥PA,
∴∠P=∠ABP=45°.
【点睛】
本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于过切点的半径是解题的关键.
23、(1)证明见解析;(2)AG=;(3)证明见解析.
【解析】
(1)根据正方形的性质得到AD∥BC,AB∥CD,AD=CD,根据相似三角形的性质列出比例式,等量代换即可;
(2)根据勾股定理求出AE,根据相似三角形的性质计算即可;
(3)延长GF交AM于H,根据平行线分线段成比例定理得到,由于BM=BE,得到GF=FH,由GF∥AD,得到,等量代换得到,即,于是得到结论.
【详解】
解:(1)∵四边形ABCD是正方形,
∴AD∥BC,AB∥CD,AD=CD,
∵GF∥BE,
∴GF∥BC,
∴GF∥AD,
∴,
∵AB∥CD,
,
∵AD=CD,
∴GF=BF;
(2)∵EB=1,BC=4,
∴=4,AE=,
∴=4,
∴AG=;
(3)延长GF交AM于H,
∵GF∥BC,
∴FH∥BC,
∴,
∴,
∵BM=BE,
∴GF=FH,
∵GF∥AD,
∴,,
∴,
∴,
∴FO•ED=OD•EF.
【点睛】
本题主要考查平行线分线段成比例及正方形的性质,掌握平行线分线段中的线段对应成比例是解题的关键,注意利用比例相等也可以证明线段相等.
24、(1);(2);(3)
【解析】
(1)OA=6,即BC=6,代入,即可得出点B的坐标
(2)将点B的坐标代入直线l中求出k即可得出解析式
(3)一次函数,必经过,要使y随x的增大而减小,即y值为,分别代入即可求出k的值.
【详解】
解:∵OA=6,矩形OABC中,BC=OA
∴BC=6
∵点B在直线上,
,解得x=8
故点B的坐标为(8,6)
故答案为(8,6)
(2)把点的坐标代入得,
解得:
∴
(3))∵一次函数,必经过),要使y随x的增大而减小
∴y值为
∴代入,
解得.
【点睛】
本题主要考待定系数法求一次函数解析式,关键要灵活运用一次函数图象上点的坐标特征进行解题.
2024年黑龙江省大庆市肇源县中考数学二模试卷(含解析): 这是一份2024年黑龙江省大庆市肇源县中考数学二模试卷(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年黑龙江省大庆市肇源县中考数学二模试卷(含解析): 这是一份2023年黑龙江省大庆市肇源县中考数学二模试卷(含解析),共32页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年黑龙江省大庆市肇源县中考数学二模试卷(含解析): 这是一份2023年黑龙江省大庆市肇源县中考数学二模试卷(含解析),共32页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。