开学活动
搜索
    上传资料 赚现金

    2021-2022学年河北省保定市阜平县重点中学中考一模数学试题含解析

    2021-2022学年河北省保定市阜平县重点中学中考一模数学试题含解析第1页
    2021-2022学年河北省保定市阜平县重点中学中考一模数学试题含解析第2页
    2021-2022学年河北省保定市阜平县重点中学中考一模数学试题含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年河北省保定市阜平县重点中学中考一模数学试题含解析

    展开

    这是一份2021-2022学年河北省保定市阜平县重点中学中考一模数学试题含解析,共21页。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.下列计算,正确的是(  )
    A.a2•a2=2a2 B.a2+a2=a4 C.(﹣a2)2=a4 D.(a+1)2=a2+1
    2.a≠0,函数y=与y=﹣ax2+a在同一直角坐标系中的大致图象可能是(  )
    A. B.
    C. D.
    3.对于点A(x1,y1),B(x2,y2),定义一种运算:.例如,A(-5,4),B(2,﹣3),.若互不重合的四点C,D,E,F,满足,则C,D,E,F四点【 】
    A.在同一条直线上 B.在同一条抛物线上
    C.在同一反比例函数图象上 D.是同一个正方形的四个顶点
    4. 如图,桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是(  )

    A. B. C. D.
    5.在Rt△ABC中,∠C=90°,如果sinA=,那么sinB的值是(  )
    A. B. C. D.
    6.如图,在四边形ABCD中,对角线 AC⊥BD,垂足为O,点E、F、G、H分别为边AD、AB、BC、CD的中点.若AC=10,BD=6,则四边形EFGH的面积为(  )

    A.20 B.15 C.30 D.60
    7.如图,数轴上表示的是下列哪个不等式组的解集(  )

    A. B. C. D.
    8.下列美丽的壮锦图案是中心对称图形的是(  )
    A. B. C. D.
    9.已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是( )

    A. B. C. D.
    10.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.0000000076克,将数0.0000000076用科学记数法表示为(  )
    A.7.6×10﹣9 B.7.6×10﹣8 C.7.6×109 D.7.6×108
    二、填空题(共7小题,每小题3分,满分21分)
    11.在平面直角坐标系xOy中,若干个半径为1个单位长度,圆心角是的扇形按图中的方式摆放,动点K从原点O出发,沿着“半径OA弧AB弧BC半径CD半径DE”的曲线运动,若点K在线段上运动的速度为每秒1个单位长度,在弧线上运动的速度为每秒个单位长度,设第n秒运动到点K,为自然数,则的坐标是____,的坐标是____

    12.若y=,则x+y= .
    13.如图,⊙O的外切正六边形ABCDEF的边长为2,则图中阴影部分的面积为_____.

    14.已知平面直角坐标系中的点A (2,﹣4)与点B关于原点中心对称,则点B的坐标为_____
    15.因式分解: =
    16.阅读理解:引入新数,新数满足分配律,结合律,交换律.已知,那么________.
    17.半径是6cm的圆内接正三角形的边长是_____cm.
    三、解答题(共7小题,满分69分)
    18.(10分)先化简,再求值:,且x为满足﹣3<x<2的整数.
    19.(5分)2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.
    (1)甲种商品与乙种商品的销售单价各多少元?
    (2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?
    20.(8分)已知圆O的半径长为2,点A、B、C为圆O上三点,弦BC=AO,点D为BC的中点,

    (1)如图,连接AC、OD,设∠OAC=α,请用α表示∠AOD;
    (2)如图,当点B为的中点时,求点A、D之间的距离:
    (3)如果AD的延长线与圆O交于点E,以O为圆心,AD为半径的圆与以BC为直径的圆相切,求弦AE的长.
    21.(10分)如图,四边形ABCD,AD∥BC,DC⊥BC于C点,AE⊥BD于E,且DB=DA.求证:AE=CD.

    22.(10分)一个不透明的口袋里装有分别标有汉字“美”、“丽”、“光”、“明”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.若从中任取一个球,求摸出球上的汉字刚好是“美”的概率;甲从中任取一球,不放回,再从中任取一球,请用树状图或列表法,求甲取出的两个球上的汉字恰能组成“美丽”或“光明”的概率.
    23.(12分)在△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC=α,∠DBC=β,且α+β=110°,连接AD,求∠ADB的度数.(不必解答)
    小聪先从特殊问题开始研究,当α=90°,β=30°时,利用轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD′,连接CD′(如图1),然后利用α=90°,β=30°以及等边三角形等相关知识便可解决这个问题.
    请结合小聪研究问题的过程和思路,在这种特殊情况下填空:△D′BC的形状是   三角形;∠ADB的度数为   .在原问题中,当∠DBC<∠ABC(如图1)时,请计算∠ADB的度数;在原问题中,过点A作直线AE⊥BD,交直线BD于E,其他条件不变若BC=7,AD=1.请直接写出线段BE的长为   .
    24.(14分)计算:(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2)



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    解:A.故错误;
    B. 故错误;
    C.正确;
    D.
    故选C.
    【点睛】
    本题考查合并同类项,同底数幂相乘;幂的乘方,以及完全平方公式的计算,掌握运算法则正确计算是解题关键.
    2、D
    【解析】
    分a>0和a<0两种情况分类讨论即可确定正确的选项
    【详解】
    当a>0时,函数y= 的图象位于一、三象限,y=﹣ax2+a的开口向下,交y轴的正半轴,没有符合的选项,
    当a<0时,函数y=的图象位于二、四象限,y=﹣ax2+a的开口向上,交y轴的负半轴,D选项符合;
    故选D.
    【点睛】
    本题考查了反比例函数的图象及二次函数的图象的知识,解题的关键是根据比例系数的符号确定其图象的位置,难度不大.
    3、A。
    【解析】∵对于点A(x1,y1),B(x2,y2),,
    ∴如果设C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6),
    那么,

    又∵,
    ∴。
    ∴。
    令,
    则C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6)都在直线上,
    ∴互不重合的四点C,D,E,F在同一条直线上。故选A。
    4、C
    【解析】
    根据左视图是从左面看所得到的图形进行解答即可.
    【详解】
    从左边看时,圆柱和长方体都是一个矩形,圆柱的矩形竖放在长方体矩形的中间.
    故选:C.
    【点睛】
    本题考查了三视图的知识,左视图是从物体的左面看得到的视图.
    5、A
    【解析】
    ∵Rt△ABC中,∠C=90°,sinA=,
    ∴cosA=,
    ∴∠A+∠B=90°,
    ∴sinB=cosA=.
    故选A.
    6、B
    【解析】
    有一个角是直角的平行四边形是矩形.利用中位线定理可得出四边形EFGH是矩形,根据矩形的面积公式解答即可.
    【详解】
    ∵点E、F分别为四边形ABCD的边AD、AB的中点,
    ∴EF∥BD,且EF=BD=1.
    同理求得EH∥AC∥GF,且EH=GF=AC=5,
    又∵AC⊥BD,
    ∴EF∥GH,FG∥HE且EF⊥FG.
    四边形EFGH是矩形.
    ∴四边形EFGH的面积=EF•EH=1×5=2,即四边形EFGH的面积是2.
    故选B.
    【点睛】
    本题考查的是中点四边形.解题时,利用了矩形的判定以及矩形的定理,矩形的判定定理有:
    (1)有一个角是直角的平行四边形是矩形;
    (2)有三个角是直角的四边形是矩形;
    (1)对角线互相平分且相等的四边形是矩形.
    7、B
    【解析】
    根据数轴上不等式解集的表示方法得出此不等式组的解集,再对各选项进行逐一判断即可.
    【详解】
    解:由数轴上不等式解集的表示方法得出此不等式组的解集为:x≥-3,
    A、不等式组的解集为x>-3,故A错误;
    B、不等式组的解集为x≥-3,故B正确;
    C、不等式组的解集为x<-3,故C错误;
    D、不等式组的解集为-3<x<5,故D错误.
    故选B.
    【点睛】
    本题考查的是在数轴上表示一元一次不等式组的解集,根据题意得出数轴上不等式组的解集是解答此题的关键.
    8、A
    【解析】
    【分析】根据中心对称图形的定义逐项进行判断即可得.
    【详解】A、是中心对称图形,故此选项正确;
    B、不是中心对称图形,故此选项错误;
    C、不是中心对称图形,故此选项错误;
    D、不是中心对称图形,故此选项错误,
    故选A.
    【点睛】本题主要考查了中心对称图形,熟练掌握中心对称图形的定义是解题的关键;把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.
    9、B
    【解析】
    观察图形,利用中心对称图形的性质解答即可.
    【详解】
    选项A,新图形不是中心对称图形,故此选项错误;
    选项B,新图形是中心对称图形,故此选项正确;
    选项C,新图形不是中心对称图形,故此选项错误;
    选项D,新图形不是中心对称图形,故此选项错误;
    故选B.
    【点睛】
    本题考查了中心对称图形的概念,熟知中心对称图形的概念是解决问题的关键.
    10、A
    【解析】
    绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    【详解】
    解:将0.0000000076用科学计数法表示为.
    故选A.
    【点睛】
    本题考查了用科学计数法表示较小的数,一般形式为a×,其中,n为由原数左边起第一个不为0的数字前面的0的个数所决定.

    二、填空题(共7小题,每小题3分,满分21分)
    11、
    【解析】
    设第n秒运动到Kn(n为自然数)点,根据点K的运动规律找出部分Kn点的坐标,根据坐标的变化找出变化规律“K4n+1(),K4n+2(2n+1,0),K4n+3(),K4n+4(2n+2,0)”,依此规律即可得出结论.
    【详解】
    设第n秒运动到Kn(n为自然数)点,观察,发现规律:K1(),K2(1,0),K3(),K4(2,0),K5(),…,∴K4n+1(),K4n+2(2n+1,0),K4n+3(),K4n+4(2n+2,0).
    ∵2018=4×504+2,∴K2018为(1009,0).
    故答案为:(),(1009,0).
    【点睛】
    本题考查了规律型中的点的坐标,解题的关键是找出变化规律,本题属于中档题,解决该题型题目时,根据运动的规律找出点的坐标,根据坐标的变化找出坐标变化的规律是关键.
    12、1.
    【解析】
    试题解析:∵原二次根式有意义,
    ∴x-3≥0,3-x≥0,
    ∴x=3,y=4,
    ∴x+y=1.
    考点:二次根式有意义的条件.
    13、
    【解析】
    由于六边形ABCDEF是正六边形,所以∠AOB=60°,故△OAB是等边三角形,OA=OB=AB=2,设点G为AB与⊙O的切点,连接OG,则OG⊥AB,OG=OA•sin60°,再根据S阴影=S△OAB-S扇形OMN,进而可得出结论.
    【详解】
    ∵六边形ABCDEF是正六边形,
    ∴∠AOB=60°,
    ∴△OAB是等边三角形,OA=OB=AB=2,
    设点G为AB与⊙O的切点,连接OG,则OG⊥AB,

    ∴S阴影=S△OAB-S扇形OMN=
    故答案为
    【点睛】
    考查不规则图形面积的计算,掌握扇形的面积公式是解题的关键.
    14、(﹣2,4)
    【解析】
    根据点P(x,y)关于原点对称的点为(-x,-y)即可得解.
    【详解】
    解:∵点A (2,-4)与点B关于原点中心对称,
    ∴点B的坐标为:(-2,4).
    故答案为:(-2,4).
    【点睛】
    此题主要考查了关于原点对称点的性质,正确掌握横纵坐标的关系是解题关键.
    15、﹣3(x﹣y)1
    【解析】
    解:﹣3x1+6xy﹣3y1=﹣3(x1+y1﹣1xy)=﹣3(x﹣y)1.故答案为:﹣3(x﹣y)1.
    点睛:本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.
    16、2
    【解析】
    根据定义即可求出答案.
    【详解】
    由题意可知:原式=1-i2=1-(-1)=2
    故答案为2
    【点睛】
    本题考查新定义型运算,解题的关键是正确理解新定义.
    17、6
    【解析】
    根据题意画出图形,作出辅助线,利用垂径定理及等边三角形的性质解答即可.
    【详解】
    如图所示,OB=OA=6,

    ∵△ABC是正三角形,
    由于正三角形的中心就是圆的圆心,
    且正三角形三线合一,
    所以BO是∠ABC的平分线;
    ∠OBD=60°×=30°,
    BD=cos30°×6=6×=3;
    根据垂径定理,BC=2×BD=6,
    故答案为6.
    【点睛】
    本题主要考查了正多边形和圆,正三角形的性质,熟练掌握等边三角形的性质是解题的关键,根据圆的内接正三角形的特点,求出内心到每个顶点的距离,可求出内接正三角形的边长.

    三、解答题(共7小题,满分69分)
    18、-5
    【解析】
    根据分式的运算法则即可求出答案.
    【详解】
    原式=[+]÷=(+)•x=x﹣1+x﹣2=2x﹣3
    由于x≠0且x≠1且x≠﹣2,
    所以x=﹣1,
    原式=﹣2﹣3=﹣5
    【点睛】
    本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.
    19、(1)甲种商品的销售单价900元,乙种商品的销售单价600元;(1)至少销售甲种商品1万件.
    【解析】
    (1)可设甲种商品的销售单价x元,乙种商品的销售单价y元,根据等量关系:①1件甲种商品与3件乙种商品的销售收入相同,②3件甲种商品比1件乙种商品的销售收入多1500元,列出方程组求解即可;
    (1)可设销售甲种商品a万件,根据甲、乙两种商品的销售总收入不低于5400万元,列出不等式求解即可.
    【详解】
    (1)设甲种商品的销售单价x元,乙种商品的销售单价y元,依题意有:
    ,解得.
    答:甲种商品的销售单价900元,乙种商品的销售单价600元;
    (1)设销售甲种商品a万件,依题意有:
    900a+600(8﹣a)≥5400,解得:a≥1.
    答:至少销售甲种商品1万件.
    【点睛】
    本题考查了一元一次不等式及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系.
    20、(1);(2);(3)
    【解析】
    (1)连接OB、OC,可证△OBC是等边三角形,根据垂径定理可得∠DOC等于30°,OA=OC可得∠ACO=∠CAO=α,利用三角形的内角和定理即可表示出∠AOD的值.
    (2)连接OB、OC,可证△OBC是等边三角形,根据垂径定理可得∠DOB等于30°,因为点D为BC的中点,则∠AOB=∠BOC=60°,所以∠AOD等于90°,根据OA=OB=2,在直角三角形中用三角函数及勾股定理即可求得OD、AD的长.
    (3)分两种情况讨论:两圆外切,两圆内切.先根据两圆相切时圆心距与两圆半径的关系,求出AD的长,再过O点作AE的垂线,利用勾股定理列出方程即可求解.
    【详解】
    (1)如图1:连接OB、OC.
    ∵BC=AO
    ∴OB=OC=BC
    ∴△OBC是等边三角形
    ∴∠BOC=60°
    ∵点D是BC的中点
    ∴∠BOD=
    ∵OA=OC
    ∴=α
    ∴∠AOD=180°-α-α-=150°-2α

    (2)如图2:连接OB、OC、OD.
    由(1)可得:△OBC是等边三角形,∠BOD=
    ∵OB=2,
    ∴OD=OB∙cos=
    ∵B为的中点,
    ∴∠AOB=∠BOC=60°
    ∴∠AOD=90°
    根据勾股定理得:AD=

    (3)①如图3.圆O与圆D相内切时:
    连接OB、OC,过O点作OF⊥AE
    ∵BC是直径,D是BC的中点
    ∴以BC为直径的圆的圆心为D点
    由(2)可得:OD=,圆D的半径为1
    ∴AD=
    设AF=x
    在Rt△AFO和Rt△DOF中,


    解得:
    ∴AE=

    ②如图4.圆O与圆D相外切时:
    连接OB、OC,过O点作OF⊥AE
    ∵BC是直径,D是BC的中点
    ∴以BC为直径的圆的圆心为D点
    由(2)可得:OD=,圆D的半径为1
    ∴AD=
    在Rt△AFO和Rt△DOF中,


    解得:
    ∴AE=

    【点睛】
    本题主要考查圆的相关知识:垂径定理,圆与圆相切的条件,关键是能灵活运用垂径定理和勾股定理相结合思考问题,另外需注意圆相切要分内切与外切两种情况.
    21、证明见解析.
    【解析】
    由AD∥BC得∠ADB=∠DBC,根据已知证明△AED≌△DCB(AAS),即可解题.
    【详解】
    解:∵AD∥BC
    ∴∠ADB=∠DBC
    ∵DC⊥BC于点C,AE⊥BD于点E
    ∴∠C=∠AED=90°
    又∵DB=DA
    ∴△AED≌△DCB(AAS)
    ∴AE=CD
    【点睛】
    本题考查了三角形全等的判定和性质,属于简单题,证明三角形全等是解题关键.
    22、 (1);(2).
    【解析】
    (1)一共4个小球,则任取一个球,共有4种不同结果,摸出球上的汉字刚好是“美”的概率为;
    (2)列表或画出树状图,根据一共出现的等可能的情况及恰能组成“美丽”或“光明”的情况进行解答即可.
    【详解】
    (1) ∵“美”、“丽”、“光”、“明”的四个小球,任取一球,共有4种不同结果,
    ∴任取一个球,摸出球上的汉字刚好是“美”的概率P=
    (2)列表如下:






    ----
    (美,丽)
    (光,美)
    (美,明)

    (美,丽)
    ----
    (光,丽)
    (明,丽)

    (美,光)
    (光,丽)
    ----
    (光,明)

    (美,明)
    (明,丽)
    (光,明)
    -------
    根据表格可得:共有12中等可能的结果,其中恰能组成“美丽”或“光明”共有4种,故
    取出的两个球上的汉字恰能组成“美丽”或“光明”的概率.
    【点睛】
    此题考查的是用列表法或树状图法求概率与不等式的性质.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.
    23、(1)①△D′BC是等边三角形,②∠ADB=30°(1)∠ADB=30°;(3)7+或7﹣
    【解析】
    (1)①如图1中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,由△ABD≌△ABD′,推出△D′BC是等边三角形;
    ②借助①的结论,再判断出△AD′B≌△AD′C,得∠AD′B=∠AD′C,由此即可解决问题.
    (1)当60°<α≤110°时,如图3中,作∠AB D′=∠ABD,B D′=BD,连接CD′,AD′,证明方法类似(1).
    (3)第①种情况:当60°<α≤110°时,如图3中,作∠AB D′=∠ABD,B D′=BD,连接CD′,AD′,证明方法类似(1),最后利用含30度角的直角三角形求出DE,即可得出结论;第②种情况:当0°<α<60°时,如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.证明方法类似(1),最后利用含30度角的直角三角形的性质即可得出结论.
    【详解】
    (1)①如图1中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,

    ∵AB=AC,∠BAC=90°,
    ∴∠ABC=45°,
    ∵∠DBC=30°,
    ∴∠ABD=∠ABC﹣∠DBC=15°,
    在△ABD和△ABD′中,
    ∴△ABD≌△ABD′,
    ∴∠ABD=∠ABD′=15°,∠ADB=∠AD′B,
    ∴∠D′BC=∠ABD′+∠ABC=60°,
    ∵BD=BD′,BD=BC,
    ∴BD′=BC,
    ∴△D′BC是等边三角形,
    ②∵△D′BC是等边三角形,
    ∴D′B=D′C,∠BD′C=60°,
    在△AD′B和△AD′C中,
    ∴△AD′B≌△AD′C,
    ∴∠AD′B=∠AD′C,
    ∴∠AD′B=∠BD′C=30°,
    ∴∠ADB=30°.
    (1)∵∠DBC<∠ABC,
    ∴60°<α≤110°,
    如图3中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,

    ∵AB=AC,
    ∴∠ABC=∠ACB,
    ∵∠BAC=α,
    ∴∠ABC=(180°﹣α)=90°﹣α,
    ∴∠ABD=∠ABC﹣∠DBC=90°﹣α﹣β,
    同(1)①可证△ABD≌△ABD′,
    ∴∠ABD=∠ABD′=90°﹣α﹣β,BD=BD′,∠ADB=∠AD′B
    ∴∠D′BC=∠ABD′+∠ABC=90°﹣α﹣β+90°﹣α=180°﹣(α+β),
    ∵α+β=110°,
    ∴∠D′BC=60°,
    由(1)②可知,△AD′B≌△AD′C,
    ∴∠AD′B=∠AD′C,
    ∴∠AD′B=∠BD′C=30°,
    ∴∠ADB=30°.
    (3)第①情况:当60°<α<110°时,如图3﹣1,

    由(1)知,∠ADB=30°,
    作AE⊥BD,
    在Rt△ADE中,∠ADB=30°,AD=1,
    ∴DE=,
    ∵△BCD'是等边三角形,
    ∴BD'=BC=7,
    ∴BD=BD'=7,
    ∴BE=BD﹣DE=7﹣;
    第②情况:当0°<α<60°时,
    如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.

    同理可得:∠ABC=(180°﹣α)=90°﹣α,
    ∴∠ABD=∠DBC﹣∠ABC=β﹣(90°﹣α),
    同(1)①可证△ABD≌△ABD′,
    ∴∠ABD=∠ABD′=β﹣(90°﹣α),BD=BD′,∠ADB=∠AD′B,
    ∴∠D′BC=∠ABC﹣∠ABD′=90°﹣α﹣[β﹣(90°﹣α)]=180°﹣(α+β),
    ∴D′B=D′C,∠BD′C=60°.
    同(1)②可证△AD′B≌△AD′C,
    ∴∠AD′B=∠AD′C,
    ∵∠AD′B+∠AD′C+∠BD′C=360°,
    ∴∠ADB=∠AD′B=150°,
    在Rt△ADE中,∠ADE=30°,AD=1,
    ∴DE=,
    ∴BE=BD+DE=7+,
    故答案为:7+或7﹣.
    【点睛】
    此题是三角形综合题,主要考查全等三角形的判定和性质.等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.
    24、-17.1
    【解析】
    按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.
    【详解】
    解:原式=﹣8+(﹣3)×18﹣9÷(﹣2),
    =﹣8﹣14﹣9÷(﹣2),
    =﹣62+4.1,
    =﹣17.1.
    【点睛】
    此题要注意正确掌握运算顺序以及符号的处理.

    相关试卷

    河北省保定市莲池区冀英学校2021-2022学年中考数学最后一模试卷含解析:

    这是一份河北省保定市莲池区冀英学校2021-2022学年中考数学最后一模试卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,计算结果是等内容,欢迎下载使用。

    河北省保定市级名校2021-2022学年中考冲刺卷数学试题含解析:

    这是一份河北省保定市级名校2021-2022学年中考冲刺卷数学试题含解析,共17页。试卷主要包含了4的平方根是,一、单选题,计算的结果是等内容,欢迎下载使用。

    河北省保定阜平县联考2021-2022学年中考数学模拟试题含解析:

    这是一份河北省保定阜平县联考2021-2022学年中考数学模拟试题含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,若,则的值为,下列方程中,是一元二次方程的是,以下各图中,能确定的是等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map