|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021-2022学年河北省保定市莲池区十三中学十校联考最后数学试题含解析
    立即下载
    加入资料篮
    2021-2022学年河北省保定市莲池区十三中学十校联考最后数学试题含解析01
    2021-2022学年河北省保定市莲池区十三中学十校联考最后数学试题含解析02
    2021-2022学年河北省保定市莲池区十三中学十校联考最后数学试题含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年河北省保定市莲池区十三中学十校联考最后数学试题含解析

    展开
    这是一份2021-2022学年河北省保定市莲池区十三中学十校联考最后数学试题含解析,共23页。试卷主要包含了答题时请按要求用笔,将抛物线绕着点等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x元,则下面所列方程中正确的是(  )
    A. B.
    C. D.
    2.A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程(  )
    A. B.
    C. +4=9 D.
    3.若a与﹣3互为倒数,则a=(  )
    A.3 B.﹣3 C. D.-
    4.下列几何体中,主视图和左视图都是矩形的是(  )
    A. B. C. D.
    5.如图是由若干个相同的小正方体搭成的一个几何体的主视图和俯视图,则所需的小正方体的个数最少是(  )

    A. B. C. D.
    6.在平面直角坐标系中,点A的坐标是(﹣1,0),点B的坐标是(3,0),在y轴的正半轴上取一点C,使A、B、C三点确定一个圆,且使AB为圆的直径,则点C的坐标是(  )
    A.(0,) B.(,0) C.(0,2) D.(2,0)
    7.将抛物线绕着点(0,3)旋转180°以后,所得图象的解析式是( ).
    A. B.
    C. D.
    8.如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为( )

    A. B.4 C. D.
    9.如图,在ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,DE:EC=2:3,则S△DEF:S△ABF=(  )

    A.2:3 B.4:9 C.2:5 D.4:25
    10.如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=(x>0)的图象上,若AB=2,则k的值为(  )

    A.4 B.2 C.2 D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.若两个关于 x,y 的二元一次方程组与有相同的解, 则 mn 的值为_____.
    12.已知一组数据,,,,的平均数是,那么这组数据的方差等于________.
    13.如图,将一个长方形纸条折成如图的形状,若已知∠2=55°,则∠1=____.

    14.如图,在中,于点,于点,为边的中点,连接,则下列结论:①,②,③为等边三角形,④当时,.请将正确结论的序号填在横线上__.

    15.若一次函数y=kx﹣1(k是常数,k≠0)的图象经过第一、三、四象限,则是k的值可以是_____.(写出一个即可).
    16.如图,10块相同的长方形墙砖拼成一个长方形,设长方形墙砖的长为x厘米,则依题意列方程为_________.

    三、解答题(共8题,共72分)
    17.(8分)如图,四边形ABCD为平行四边形,∠BAD的角平分线AF交CD于点E,交BC的延长线于点F.
    (1)求证:BF=CD;
    (2)连接BE,若BE⊥AF,∠BFA=60°,BE=,求平行四边形ABCD的周长.

    18.(8分)如图,以AB边为直径的⊙O经过点P,C是⊙O上一点,连结PC交AB于点E,且∠ACP=60°,PA=PD.试判断PD与⊙O的位置关系,并说明理由;若点C是弧AB的中点,已知AB=4,求CE•CP的值.

    19.(8分)如图1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.

    (1)OC的长为  ;
    (2)D是OA上一点,以BD为直径作⊙M,⊙M交AB于点Q.当⊙M与y轴相切时,sin∠BOQ=  ;
    (3)如图2,动点P以每秒1个单位长度的速度,从点O沿线段OA向点A运动;同时动点D以相同的速度,从点B沿折线B﹣C﹣O向点O运动.当点P到达点A时,两点同时停止运动.过点P作直线PE∥OC,与折线O﹣B﹣A交于点E.设点P运动的时间为t(秒).求当以B、D、E为顶点的三角形是直角三角形时点E的坐标.
    20.(8分)一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设慢车离乙地的距离为y1(km),快车离乙地的距离为y2(km),慢车行驶时间为x(h),两车之间的距离为S(km),y1,y2与x的函数关系图象如图①所示,S与x的函数关系图象如图②所示:

    (1)图中的a=______,b=______.
    (2)求快车在行驶的过程中S关于x的函数关系式.
    (3)直接写出两车出发多长时间相距200km?
    21.(8分)某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?
    22.(10分)如图,直线y=﹣x+3分别与x轴、y交于点B、C;抛物线y=x2+bx+c经过点B、C,与x轴的另一个交点为点A(点A在点B的左侧),对称轴为l1,顶点为D.

    (1)求抛物线y=x2+bx+c的解析式.
    (2)点M(1,m)为y轴上一动点,过点M作直线l2平行于x轴,与抛物线交于点P(x1,y1),Q(x2,y2),与直线BC交于点N(x3,y3),且x2>x1>1.
    ①结合函数的图象,求x3的取值范围;
    ②若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,求m的值.
    23.(12分)计算:
    (1)﹣12018+|﹣2|+2cos30°;
    (2)(a+1)2+(1﹣a)(a+1);
    24.某校为了解学生体质情况,从各年级随机抽取部分学生进行体能测试,每个学生的测试成绩按标准对应为优秀、良好、及格、不及格四个等级,统计员在将测试数据绘制成图表时发现,优秀漏统计4人,良好漏统计6人,于是及时更正,从而形成如图图表,请按正确数据解答下列各题:
    学生体能测试成绩各等次人数统计表
    体能等级
    调整前人数
    调整后人数
    优秀
    8
       
    良好
    16
       
    及格
    12
       
    不及格
    4
       
    合计
    40
       
    (1)填写统计表;
    (2)根据调整后数据,补全条形统计图;
    (3)若该校共有学生1500人,请你估算出该校体能测试等级为“优秀”的人数.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    首先设文学类图书平均每本的价格为x元,则科普类图书平均每本的价格为1.2x元,根据题意可得等量关系:学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,根据等量关系列出方程,
    【详解】
    设学校购买文学类图书平均每本书的价格是x元,可得:
    故选B.
    【点睛】
    此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.
    2、A
    【解析】
    根据轮船在静水中的速度为x千米/时可进一步得出顺流与逆流速度,从而得出各自航行时间,然后根据两次航行时间共用去9小时进一步列出方程组即可.
    【详解】
    ∵轮船在静水中的速度为x千米/时,
    ∴顺流航行时间为:,逆流航行时间为:,
    ∴可得出方程:,
    故选:A.
    【点睛】
    本题主要考查了分式方程的应用,熟练掌握顺流与逆流速度的性质是解题关键.
    3、D
    【解析】
    试题分析:根据乘积是1的两个数互为倒数,可得3a=1,
    ∴a=,
    故选C.
    考点:倒数.
    4、C
    【解析】
    主视图、左视图是分别从物体正面、左面和上面看,所得到的图形.依此即可求解.
    【详解】
    A. 主视图为圆形,左视图为圆,故选项错误;
    B. 主视图为三角形,左视图为三角形,故选项错误;
    C. 主视图为矩形,左视图为矩形,故选项正确;
    D. 主视图为矩形,左视图为圆形,故选项错误.
    故答案选:C.
    【点睛】
    本题考查的知识点是截一个几何体,解题的关键是熟练的掌握截一个几何体.
    5、B
    【解析】
    主视图、俯视图是分别从物体正面、上面看,所得到的图形.
    【详解】
    综合主视图和俯视图,底层最少有个小立方体,第二层最少有个小立方体,因此搭成这个几何体的小正方体的个数最少是个.
    故选:B.
    【点睛】
    此题考查由三视图判断几何体,解题关键在于识别图形
    6、A
    【解析】
    直接根据△AOC∽△COB得出OC2=OA•OB,即可求出OC的长,即可得出C点坐标.
    【详解】

    如图,连结AC,CB.    
    依△AOC∽△COB的结论可得:OC2=OA×OB,
    即OC2=1×3=3,
    解得:OC=或− (负数舍去),
    故C点的坐标为(0, ).
    故答案选:A.
    【点睛】
    本题考查了坐标与图形性质,解题的关键是熟练的掌握坐标与图形的性质.
    7、D
    【解析】
    将抛物线绕着点(0,3)旋转180°以后,a的值变为原来的相反数,根据中心对称的性质求出旋转后的顶点坐标即可得到旋转180°以后所得图象的解析式.
    【详解】
    由题意得,a=-.
    设旋转180°以后的顶点为(x′,y′),
    则x′=2×0-(-2)=2,y′=2×3-5=1,
    ∴旋转180°以后的顶点为(2,1),
    ∴旋转180°以后所得图象的解析式为:.
    故选D.
    【点睛】
    本题考查了二次函数图象的旋转变换,在绕抛物线某点旋转180°以后,二次函数的开口大小没有变化,方向相反;设旋转前的的顶点为(x,y),旋转中心为(a,b),由中心对称的性质可知新顶点坐标为(2a-x,2b-y),从而可求出旋转后的函数解析式.
    8、B
    【解析】
    求出AD=BD,根据∠FBD+∠C=90°,∠CAD+∠C=90°,推出∠FBD=∠CAD,根据ASA证△FBD≌△CAD,推出CD=DF即可.
    【详解】
    解:∵AD⊥BC,BE⊥AC,
    ∴∠ADB=∠AEB=∠ADC=90°,
    ∴∠EAF+∠AFE=90°,∠FBD+∠BFD=90°,
    ∵∠AFE=∠BFD,
    ∴∠EAF=∠FBD,
    ∵∠ADB=90°,∠ABC=45°,
    ∴∠BAD=45°=∠ABC,
    ∴AD=BD,
    在△ADC和△BDF中 ,
    ∴△ADC≌△BDF,
    ∴DF=CD=4,
    故选:B.
    【点睛】
    此题主要考查了全等三角形的判定,关键是找出能使三角形全等的条件.
    9、D
    【解析】
    试题分析:先根据平行四边形的性质及相似三角形的判定定理得出△DEF∽△BAF,从而DE:AB=DE:DC=2:5,所以S△DEF:S△ABF=4:25
    试题解析:∵四边形ABCD是平行四边形,
    ∴AB∥CD,BA=DC
    ∴∠EAB=∠DEF,∠AFB=∠DFE,
    ∴△DEF∽△BAF,
    ∴DE:AB=DE:DC=2:5,
    ∴S△DEF:S△ABF=4:25,
    考点:1.相似三角形的判定与性质;2.三角形的面积;3.平行四边形的性质.
    10、A
    【解析】
    【分析】作BD⊥AC于D,如图,先利用等腰直角三角形的性质得到AC=AB=2,BD=AD=CD=,再利用AC⊥x轴得到C(,2),然后根据反比例函数图象上点的坐标特征计算k的值.
    【详解】作BD⊥AC于D,如图,
    ∵△ABC为等腰直角三角形,
    ∴AC=AB=2,
    ∴BD=AD=CD=,
    ∵AC⊥x轴,
    ∴C(,2),
    把C(,2)代入y=得k=×2=4,
    故选A.

    【点睛】本题考查了等腰直角三角形的性质以及反比例函数图象上点的坐标特征,熟知反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k是解题的关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、1
    【解析】
    联立不含m、n的方程求出x与y的值,代入求出m、n的值,即可求出所求式子的值.
    【详解】
    联立得:,
    ①×2+②,得:10x=20,
    解得:x=2,
    将x=2代入①,得:1-y=1,
    解得:y=0,
    则,
    将x=2、y=0代入,得:,
    解得:,
    则mn=1,
    故答案为1.
    【点睛】
    此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.
    12、5.2
    【解析】
    分析:首先根据平均数求出x的值,然后根据方差的计算法则进行计算即可得出答案.
    详解:∵平均数为6, ∴(3+4+6+x+9)÷5=6, 解得:x=8,
    ∴方差为:.
    点睛:本题主要考查的是平均数和方差的计算法则,属于基础题型.明确计算公式是解决这个问题的关键.
    13、1
    【解析】
    由折叠可得∠3=180°﹣2∠2,进而可得∠3的度数,然后再根据两直线平行,同旁内角互补可得∠1+∠3=180°,进而可得∠1的度数.
    【详解】
    解:由折叠可得∠3=180°﹣2∠2=180°﹣1°=70°,
    ∵AB∥CD,
    ∴∠1+∠3=180°,
    ∴∠1=180°﹣70°=1°,
    故答案为1.

    14、①③④
    【解析】
    ①根据直角三角形斜边上的中线等于斜边的一半可判断①;
    ②先证明△ABM∽△ACN,再根据相似三角形的对应边成比例可判断②;
    ③先根据直角三角形两锐角互余的性质求出∠ABM=∠ACN=30°,再根据三角形的内角和定理求出∠BCN+∠CBM=60°,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BPN+∠CPM=120°,从而得到∠MPN=60°,又由①得PM=PN,根据有一个角是60°的等腰三角形是等边三角形可判断③;
    ④当∠ABC=45°时,∠BCN=45°,进而判断④.
    【详解】
    ①∵BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,
    ∴PM=BC,PN=BC,
    ∴PM=PN,正确;
    ②在△ABM与△ACN中,
    ∵∠A=∠A,∠AMB=∠ANC=90°,
    ∴△ABM∽△ACN,
    ∴,错误;
    ③∵∠A=60°,BM⊥AC于点M,CN⊥AB于点N,
    ∴∠ABM=∠ACN=30°,
    在△ABC中,∠BCN+∠CBM=180°-60°-30°×2=60°,
    ∵点P是BC的中点,BM⊥AC,CN⊥AB,
    ∴PM=PN=PB=PC,
    ∴∠BPN=2∠BCN,∠CPM=2∠CBM,
    ∴∠BPN+∠CPM=2(∠BCN+∠CBM)=2×60°=120°,
    ∴∠MPN=60°,
    ∴△PMN是等边三角形,正确;
    ④当∠ABC=45°时,∵CN⊥AB于点N,
    ∴∠BNC=90°,∠BCN=45°,
    ∵P为BC中点,可得BC=PB=PC,故④正确.
    所以正确的选项有:①③④
    故答案为①③④
    【点睛】
    本题主要考查了直角三角形斜边的中线等于斜边的一半的性质,相似三角形、等边三角形、等腰直角三角形的判定与性质,等腰三角形三线合一的性质,仔细分析图形并熟练掌握性质是解题的关键.
    15、1
    【解析】
    由一次函数图象经过第一、三、四象限,可知k>0,﹣1<0,在范围内确定k的值即可.
    【详解】
    解:因为一次函数y=kx﹣1(k是常数,k≠0)的图象经过第一、三、四象限,所以k>0,﹣1<0,所以k可以取1.
    故答案为1.
    【点睛】
    根据一次函数图象所经过的象限,可确定一次项系数,常数项的值的符号,从而确定字母k的取值范围.
    16、x+x=75.
    【解析】
    试题解析:设长方形墙砖的长为x厘米,
    可得:x+x=75.

    三、解答题(共8题,共72分)
    17、(1)证明见解析;(2)12
    【解析】
    (1)由平行四边形的性质和角平分线得出∠BAF=∠BFA,即可得出AB=BF;
    (2)由题意可证△ABF为等边三角形,点E是AF的中点. 可求EF、BF的值,即可得解.
    【详解】
    解:(1)证明:∵ 四边形ABCD为平行四边形,
    ∴ AB=CD,∠FAD=∠AFB
    又∵ AF平分∠BAD,
    ∴ ∠FAD=∠FAB
    ∴ ∠AFB=∠FAB
    ∴ AB=BF
    ∴ BF=CD
    (2)解:由题意可证△ABF为等边三角形,点E是AF的中点
    在Rt△BEF中,∠BFA=60°,BE=,
    可求EF=2,BF=4
    ∴ 平行四边形ABCD的周长为12
    18、(1)PD是⊙O的切线.证明见解析.(2)1.
    【解析】
    试题分析:(1)连结OP,根据圆周角定理可得∠AOP=2∠ACP=120°,然后计算出∠PAD和∠D的度数,进而可得∠OPD=90°,从而证明PD是⊙O的切线;
    (2)连结BC,首先求出∠CAB=∠ABC=∠APC=45°,然后可得AC长,再证明△CAE∽△CPA,进而可得,然后可得CE•CP的值.
    试题解析:(1)如图,PD是⊙O的切线.
    证明如下:
    连结OP,∵∠ACP=60°,∴∠AOP=120°,∵OA=OP,∴∠OAP=∠OPA=30°,∵PA=PD,∴∠PAO=∠D=30°,∴∠OPD=90°,∴PD是⊙O的切线.
    (2)连结BC,∵AB是⊙O的直径,∴∠ACB=90°,又∵C为弧AB的中点,∴∠CAB=∠ABC=∠APC=45°,∵AB=4,AC=Absin45°=.∵∠C=∠C,∠CAB=∠APC,∴△CAE∽△CPA,∴,∴CP•CE=CA2=()2=1.

    考点:相似三角形的判定与性质;圆心角、弧、弦的关系;直线与圆的位置关系;探究型.
    19、(4)4;(2);(4)点E的坐标为(4,2)、(,)、(4,2).
    【解析】
    分析:(4)过点B作BH⊥OA于H,如图4(4),易证四边形OCBH是矩形,从而有OC=BH,只需在△AHB中运用三角函数求出BH即可.
    (2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图4(2),则有OH=2,BH=4,MN⊥OC.设圆的半径为r,则MN=MB=MD=r.在Rt△BHD中运用勾股定理可求出r=2,从而得到点D与点H重合.易证△AFG∽△ADB,从而可求出AF、GF、OF、OG、OB、AB、BG.设OR=x,利用BR2=OB2﹣OR2=BG2﹣RG2可求出x,进而可求出BR.在Rt△ORB中运用三角函数就可解决问题.
    (4)由于△BDE的直角不确定,故需分情况讨论,可分三种情况(①∠BDE=90°,②∠BED=90°,③∠DBE=90°)讨论,然后运用相似三角形的性质及三角函数等知识建立关于t的方程就可解决问题.
    详解:(4)过点B作BH⊥OA于H,如图4(4),则有∠BHA=90°=∠COA,∴OC∥BH.
    ∵BC∥OA,∴四边形OCBH是矩形,∴OC=BH,BC=OH.
    ∵OA=6,BC=2,∴AH=0A﹣OH=OA﹣BC=6﹣2=4.
    ∵∠BHA=90°,∠BAO=45°,
    ∴tan∠BAH==4,∴BH=HA=4,∴OC=BH=4.
    故答案为4.
    (2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图4(2).
    由(4)得:OH=2,BH=4.
    ∵OC与⊙M相切于N,∴MN⊥OC.
    设圆的半径为r,则MN=MB=MD=r.
    ∵BC⊥OC,OA⊥OC,∴BC∥MN∥OA.
    ∵BM=DM,∴CN=ON,∴MN=(BC+OD),∴OD=2r﹣2,∴DH==.
    在Rt△BHD中,∵∠BHD=90°,∴BD2=BH2+DH2,∴(2r)2=42+(2r﹣4)2.
    解得:r=2,∴DH=0,即点D与点H重合,∴BD⊥0A,BD=AD.
    ∵BD是⊙M的直径,∴∠BGD=90°,即DG⊥AB,∴BG=AG.
    ∵GF⊥OA,BD⊥OA,∴GF∥BD,∴△AFG∽△ADB,
    ∴===,∴AF=AD=2,GF=BD=2,∴OF=4,
    ∴OG===2.
    同理可得:OB=2,AB=4,∴BG=AB=2.
    设OR=x,则RG=2﹣x.
    ∵BR⊥OG,∴∠BRO=∠BRG=90°,∴BR2=OB2﹣OR2=BG2﹣RG2,
    ∴(2)2﹣x2=(2)2﹣(2﹣x)2.
    解得:x=,∴BR2=OB2﹣OR2=(2)2﹣()2=,∴BR=.
    在Rt△ORB中,sin∠BOR===.
    故答案为.
    (4)①当∠BDE=90°时,点D在直线PE上,如图2.
    此时DP=OC=4,BD+OP=BD+CD=BC=2,BD=t,OP=t. 则有2t=2.
    解得:t=4.则OP=CD=DB=4.
    ∵DE∥OC,∴△BDE∽△BCO,∴==,∴DE=2,∴EP=2,
    ∴点E的坐标为(4,2).
    ②当∠BED=90°时,如图4.
    ∵∠DBE=OBC,∠DEB=∠BCO=90°,∴△DBE∽△OBC,
    ∴==,∴BE=t.
    ∵PE∥OC,∴∠OEP=∠BOC.
    ∵∠OPE=∠BCO=90°,∴△OPE∽△BCO,
    ∴==,∴OE=t.
    ∵OE+BE=OB=2t+t=2.
    解得:t=,∴OP=,OE=,∴PE==,
    ∴点E的坐标为().
    ③当∠DBE=90°时,如图4.
    此时PE=PA=6﹣t,OD=OC+BC﹣t=6﹣t.
    则有OD=PE,EA==(6﹣t)=6﹣t,
    ∴BE=BA﹣EA=4﹣(6﹣t)=t﹣2.
    ∵PE∥OD,OD=PE,∠DOP=90°,∴四边形ODEP是矩形,
    ∴DE=OP=t,DE∥OP,∴∠BED=∠BAO=45°.
    在Rt△DBE中,cos∠BED==,∴DE=BE,
    ∴t=t﹣2)=2t﹣4.
    解得:t=4,∴OP=4,PE=6﹣4=2,∴点E的坐标为(4,2).
    综上所述:当以B、D、E为顶点的三角形是直角三角形时点E的坐标为(4,2)、()、(4,2).


    点睛:本题考查了圆周角定理、切线的性质、相似三角形的判定与性质、三角函数的定义、平行线分线段成比例、矩形的判定与性质、勾股定理等知识,还考查了分类讨论的数学思想,有一定的综合性.
    20、(1)a=6, b=;(2) ;(3)或5h
    【解析】
    (1)根据S与x之间的函数关系式可以得到当位于C点时,两人之间的距离增加变缓,此时快车到站,指出此时a的值即可,求得a的值后求出两车相遇时的时间即为b的值;
    (2)根据函数的图像可以得到A、B、C、D的点的坐标,利用待定系数法求得函数的解析式即可.
    (3)分两车相遇前和两车相遇后两种情况讨论,当相遇前令s=200即可求得x的值.
    【详解】
    解:(1)由s与x之间的函数的图像可知:
    当位于C点时,两车之间的距离增加变缓,由此可以得到a=6,
    ∵快车每小时行驶100千米,慢车每小时行驶60千米,两地之间的距离为600,
    ∴;
    (2)∵从函数的图象上可以得到A、B、C、D点的坐标分别为:(0,600)、(,0)、(6,360)、(10,600),
    ∴设线段AB所在直线解析式为:S=kx+b,

    解得:k=-160,b=600,
    设线段BC所在的直线的解析式为:S=kx+b,

    解得:k=160,b=-600,
    设直线CD的解析式为:S=kx+b,

    解得:k=60,b=0

    (3)当两车相遇前相距200km,
    此时:S=-160x+600=200,解得:,
    当两车相遇后相距200km,
    此时:S=160x-600=200,解得:x=5,
    ∴或5时两车相距200千米
    【点睛】
    本题考查了一次函数的综合知识,特别是本题中涉及到了分段函数的知识,解题时主要自变量的取值范围.
    21、(1)两次下降的百分率为10%;
    (2)要使每月销售这种商品的利润达到110元,且更有利于减少库存,则商品应降价2.1元.
    【解析】
    (1)设每次降价的百分率为 x,(1﹣x)2 为两次降价后的百分率,40元 降至 32.4元 就是方程的等量条件,列出方程求解即可;
    (2)设每天要想获得 110 元的利润,且更有利于减少库存,则每件商品应降价 y 元,由销售问题的数量关系建立方程求出其解即可
    【详解】
    解:(1)设每次降价的百分率为 x.
    40×(1﹣x)2=32.4
    x=10%或 190%(190%不符合题意,舍去)
    答:该商品连续两次下调相同的百分率后售价降至每件 32.4元,两次下降的百分率为10%;
    (2)设每天要想获得 110 元的利润,且更有利于减少库存,则每件商品应降价 y 元,
    由题意,得

    解得:=1.1,=2.1,
    ∵有利于减少库存,∴y=2.1.
    答:要使商场每月销售这种商品的利润达到 110 元,且更有利于减少库存,则每件商品应降价 2.1 元.
    【点睛】
    此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可.
    22、(2)y=x2﹣4x+3;(2)①2<x3<4,②m的值为或2.
    【解析】
    (2)由直线y=﹣x+3分别与x轴、y交于点B、C求得点B、C的坐标,再代入y=x2+bx+c求得b、c的值,即可求得抛物线的解析式;(2)①先求得抛物线的顶点坐标为D(2,﹣2),当直线l2经过点D时求得m=﹣2;当直线l2经过点C时求得m=3,再由x2>x2>2,可得﹣2<y3<3,即可﹣2<﹣x3+3<3,所以2<x3<4;②分当直线l2在x轴的下方时,点Q在点P、N之间和当直线l2在x轴的上方时,点N在点P、Q之间两种情况求m的值即可.
    【详解】
    (2)在y=﹣x+3中,令x=2,则y=3;
    令y=2,则x=3;得B(3,2),C(2,3),
    将点B(3,2),C(2,3)的坐标代入y=x2+bx+c
    得:,解得
    ∴y=x2﹣4x+3;
    (2)∵直线l2平行于x轴,
    ∴y2=y2=y3=m,
    ①如图①,y=x2﹣4x+3=(x﹣2)2﹣2,
    ∴顶点为D(2,﹣2),
    当直线l2经过点D时,m=﹣2;
    当直线l2经过点C时,m=3
    ∵x2>x2>2,
    ∴﹣2<y3<3,
    即﹣2<﹣x3+3<3,
    得2<x3<4,
    ②如图①,当直线l2在x轴的下方时,点Q在点P、N之间,
    若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,则得PQ=QN.
    ∵x2>x2>2,
    ∴x3﹣x2=x2﹣x2,
    即 x3=2x2﹣x2,
    ∵l2∥x轴,即PQ∥x轴,
    ∴点P、Q关于抛物线的对称轴l2对称,
    又抛物线的对称轴l2为x=2,
    ∴2﹣x2=x2﹣2,
    即x2=4﹣x2,
    ∴x3=3x2﹣4,
    将点Q(x2,y2)的坐标代入y=x2﹣4x+3
    得y2=x22﹣4x2+3,又y2=y3=﹣x3+3
    ∴x22﹣4x2+3=﹣x3+3,
    ∴x22﹣4x2=﹣(3x2﹣4)
    即 x22﹣x2﹣4=2,解得x2=,(负值已舍去),
    ∴m=()2﹣4×+3=
    如图②,当直线l2在x轴的上方时,点N在点P、Q之间,

    若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,则得PN=NQ.
    由上可得点P、Q关于直线l2对称,
    ∴点N在抛物线的对称轴l2:x=2,
    又点N在直线y=﹣x+3上,
    ∴y3=﹣2+3=2,即m=2.
    故m的值为或2.
    【点睛】
    本题是二次函数综合题,
    本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、线段的中点及分类讨论思想等知识.在(2)中注意待定系数法的应用;在(2)①注意利用数形结合思想;在(2)②注意分情况讨论.本题考查知识点较多,综合性较强,难度较大.
    23、 (1)1;(2)2a+2
    【解析】
    (1)根据特殊角锐角三角函数值、绝对值的性质即可求出答案;
    (2)先化简原式,然后将x的值代入原式即可求出答案.
    【详解】
    解:(1)原式=﹣1+2﹣+2×=1;
    (2)原式=a2+2a+1+1﹣a2=2a+2.
    【点睛】
    本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.
    24、(1)12;22;12;4;50;(2)详见解析;(3)1.
    【解析】
    (1)求出各自的人数,补全表格即可;
    (2)根据调整后的数据,补全条形统计图即可;
    (3)根据“游戏”人数占的百分比,乘以1500即可得到结果.
    【详解】
    解:(1)填表如下:
    体能等级
    调整前人数
    调整后人数
    优秀
    8
    12
    良好
    16
    22
    及格
    12
    12
    不及格
    4
    4
    合计
    40
    50
    故答案为12;22;12;4;50;
    (2)补全条形统计图,如图所示:

    (3)抽取的学生中体能测试的优秀率为24%,
    则该校体能测试为“优秀”的人数为1500×24%=1(人).
    【点睛】
    本题考查了统计表与条形统计图的知识点,解题的关键是熟练的掌握统计表与条形统计图的相关知识点.

    相关试卷

    河南郑州中学原区郑州中学原实验校2021-2022学年十校联考最后数学试题含解析: 这是一份河南郑州中学原区郑州中学原实验校2021-2022学年十校联考最后数学试题含解析,共20页。试卷主要包含了下列命题是真命题的是,已知等内容,欢迎下载使用。

    河北省保定市莲池区冀英学校2021-2022学年中考数学最后一模试卷含解析: 这是一份河北省保定市莲池区冀英学校2021-2022学年中考数学最后一模试卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,计算结果是等内容,欢迎下载使用。

    河北省保定莲池区六校联考2021-2022学年中考联考数学试题含解析: 这是一份河北省保定莲池区六校联考2021-2022学年中考联考数学试题含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号,不等式组的解集在数轴上表示为,如图图形中,是中心对称图形的是,下列计算正确的是,6的相反数为等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map