2021-2022学年河北省保定市雄县市级名校中考数学模试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(共10小题,每小题3分,共30分)
1.如图,直线AB、CD相交于点O,EO⊥CD,下列说法错误的是( )
A.∠AOD=∠BOC B.∠AOE+∠BOD=90°
C.∠AOC=∠AOE D.∠AOD+∠BOD=180°
2.如图由四个相同的小立方体组成的立体图像,它的主视图是( ).
A. B. C. D.
3.如图,等腰直角三角形的顶点A、C分别在直线a、b上,若a∥b,∠1=30°,则∠2的度数为( )
A.30° B.15° C.10° D.20°
4.下列条件中不能判定三角形全等的是( )
A.两角和其中一角的对边对应相等 B.三条边对应相等
C.两边和它们的夹角对应相等 D.三个角对应相等
5.如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=1,点A在函数y=﹣(x<0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y=(x>0)的图象上,C1O1与此图象交于点P,则点P的纵坐标是( )
A. B. C. D.
6.如图所示,在长方形纸片ABCD中,AB=32cm,把长方形纸片沿AC折叠,点B落在点E处,AE交DC于点F,AF=25cm,则AD的长为( )
A.16cm B.20cm C.24cm D.28cm
7.下列二次根式,最简二次根式是( )
A. B. C. D.
8.滴滴快车是一种便捷的出行工具,计价规则如下表:
计费项目
里程费
时长费
远途费
单价
1.8元/公里
0.3元/分钟
0.8元/公里
注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里收0.8元.
小王与小张各自乘坐滴滴快车,行车里程分别为6公里与8.5公里,如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差( )
A.10分钟 B.13分钟 C.15分钟 D.19分钟
9.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是( )
A. B.
C. D.
10.甲、乙两人分别以4m/s和5m/s的速度,同时从100m直线型跑道的起点向同一方向起跑,设乙的奔跑时间为t(s),甲乙两人的距离为S(m),则S关于t的函数图象为( )
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为_____.
12.如图,在扇形AOB中,∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,点D在OB上,点E在OB的延长线上,当正方形CDEF的边长为4时,阴影部分的面积为_____.
13.在正方形铁皮上剪下一个扇形和一个半径为1cm的圆形,使之恰好围成一个圆锥,则圆锥的高为______.
14.二次根式 中的字母a的取值范围是_____.
15.如图,分别以正六边形相间隔的3个顶点为圆心,以这个正六边形的边长为半径作扇形得到 “三叶草”图案,若正六边形的边长为3,则“三叶草”图案中阴影部分的面积为_____(结果保留π)
16.若a+b=3,ab=2,则a2+b2=_____.
三、解答题(共8题,共72分)
17.(8分)先化简,再求值:(1+)÷,其中x=+1.
18.(8分)如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.
(1)求证:OP=OQ;
(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合).设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD是菱形.
19.(8分)已知关于x,y的二元一次方程组的解为,求a、b的值.
20.(8分)(问题情境)
张老师给爱好学习的小军和小俊提出这样的一个问题:如图1,在△ABC中,AB=AC,点P为边BC上任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D,E,过点C作CF⊥AB,垂足为F,求证:PD+PE=CF.
小军的证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.
小俊的证明思路是:如图2,过点P作PG⊥CF,垂足为G,可以证得:PD=GF,PE=CG,则PD+PE=CF.
[变式探究]
如图3,当点P在BC延长线上时,其余条件不变,求证:PD﹣PE=CF;
请运用上述解答中所积累的经验和方法完成下列两题:
[结论运用]
如图4,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=8,CF=3,求PG+PH的值;
[迁移拓展]
图5是一个航模的截面示意图.在四边形ABCD中,E为AB边上的一点,ED⊥AD,EC⊥CB,垂足分别为D、C,且AD•CE=DE•BC,AB=2dm,AD=3dm,BD=dm.M、N分别为AE、BE的中点,连接DM、CN,求△DEM与△CEN的周长之和.
21.(8分)如图,△ABC三个顶点的坐标分别为A(1,1)、B(4,2)、C(3,4).
(1)画出△ABC关于y轴的对称图形△A1B1C1,并写出B1点的坐标;
(2)画出△ABC绕原点O旋转180°后得到的图形△A2B2C2,并写出B2点的坐标;
(3)在x轴上求作一点P,使△PAB的周长最小,并直接写出点P的坐标.
22.(10分)如图,在Rt△ABC中,∠ACB=90°,CD 是斜边AB上的高
(1)△ACD与△ABC相似吗?为什么?
(2)AC2=AB•AD 成立吗?为什么?
23.(12分)解方程式:- 3 =
24.已知关于x的一元二次方程有实数根.
(1)求k的取值范围;
(2)若k为正整数,且方程有两个非零的整数根,求k的取值.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
根据对顶角性质、邻补角定义及垂线的定义逐一判断可得.
【详解】
A、∠AOD与∠BOC是对顶角,所以∠AOD=∠BOC,此选项正确;
B、由EO⊥CD知∠DOE=90°,所以∠AOE+∠BOD=90°,此选项正确;
C、∠AOC与∠BOD是对顶角,所以∠AOC=∠BOD,此选项错误;
D、∠AOD与∠BOD是邻补角,所以∠AOD+∠BOD=180°,此选项正确;
故选C.
【点睛】
本题主要考查垂线、对顶角与邻补角,解题的关键是掌握对顶角性质、邻补角定义及垂线的定义.
2、D
【解析】
从正面看,共2列,左边是1个正方形,
右边是2个正方形,且下齐.
故选D.
3、B
【解析】
分析:由等腰直角三角形的性质和平行线的性质求出∠ACD=60°,即可得出∠2的度数.
详解:如图所示:
∵△ABC是等腰直角三角形,
∴∠BAC=90°,∠ACB=45°,
∴∠1+∠BAC=30°+90°=120°,
∵a∥b,
∴∠ACD=180°-120°=60°,
∴∠2=∠ACD-∠ACB=60°-45°=15°;
故选B.
点睛:本题考查了平行线的性质、等腰直角三角形的性质;熟练掌握等腰直角三角形的性质,由平行线的性质求出∠ACD的度数是解决问题的关键.
4、D
【解析】
解:A、符合AAS,能判定三角形全等;
B、符合SSS,能判定三角形全等;;
C、符合SAS,能判定三角形全等;
D、满足AAA,没有相对应的判定方法,不能由此判定三角形全等;
故选D.
5、C
【解析】
分析:先求出A点坐标,再根据图形平移的性质得出A1点的坐标,故可得出反比例函数的解析式,把O1点的横坐标代入即可得出结论.
详解:∵OB=1,AB⊥OB,点A在函数 (x<0)的图象上,
∴当x=−1时,y=2,
∴A(−1,2).
∵此矩形向右平移3个单位长度到的位置,
∴B1(2,0),
∴A1(2,2).
∵点A1在函数 (x>0)的图象上,
∴k=4,
∴反比例函数的解析式为,O1(3,0),
∵C1O1⊥x轴,
∴当x=3时,
∴P
故选C.
点睛:考查反比例函数图象上点的坐标特征, 坐标与图形变化-平移,解题的关键是运用双曲线方程求出点A的坐标,利用平移的性质求出点A1的坐标.
6、C
【解析】
首先根据平行线的性质以及折叠的性质证明∠EAC=∠DCA,根据等角对等边证明FC=AF,则DF即可求得,然后在直角△ADF中利用勾股定理求解.
【详解】
∵长方形ABCD中,AB∥CD,
∴∠BAC=∠DCA,
又∵∠BAC=∠EAC,
∴∠EAC=∠DCA,
∴FC=AF=25cm,
又∵长方形ABCD中,DC=AB=32cm,
∴DF=DC-FC=32-25=7cm,
在直角△ADF中,AD==24(cm).
故选C.
【点睛】
本题考查了折叠的性质以及勾股定理,在折叠的过程中注意到相等的角以及相等的线段是关键.
7、C
【解析】
根据最简二次根式的定义逐个判断即可.
【详解】
A.,不是最简二次根式,故本选项不符合题意;
B.,不是最简二次根式,故本选项不符合题意;
C.是最简二次根式,故本选项符合题意;
D.,不是最简二次根式,故本选项不符合题意.
故选C.
【点睛】
本题考查了最简二次根式的定义,能熟记最简二次根式的定义是解答此题的关键.
8、D
【解析】
设小王的行车时间为x分钟,小张的行车时间为y分钟,根据计价规则计算出小王的车费和小张的车费,建立方程求解.
【详解】
设小王的行车时间为x分钟,小张的行车时间为y分钟,依题可得:
1.8×6+0.3x=1.8×8.5+0.3y+0.8×(8.5-7),
10.8+0.3x=16.5+0.3y,
0.3(x-y)=5.7,
x-y=19,
故答案为D.
【点睛】
本题考查列方程解应用题,读懂表格中的计价规则是解题的关键.
9、D
【解析】
根据俯视图中每列正方形的个数,再画出从正面的,左面看得到的图形:
几何体的左视图是:
.
故选D.
10、B
【解析】
匀速直线运动的路程s与运动时间t成正比,s-t图象是一条倾斜的直线解答.
【详解】
∵甲、乙两人分别以4m/s和5m/s的速度,
∴两人的相对速度为1m/s,
设乙的奔跑时间为t(s),所需时间为20s,
两人距离20s×1m/s=20m,
故选B.
【点睛】
此题考查函数图象问题,关键是根据匀速直线运动的路程s与运动时间t成正比解答.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、0
【分析】利用待定系数法得出直线解析式,再得出平移后得到的直线,求与坐标轴交点的坐标,转化为直角三角形中的问题,再由直线与圆的位置关系的判定解答.
【详解】把点(12,﹣5)代入直线y=kx得,
﹣5=12k,
∴k=﹣;
由y=﹣x平移m(m>0)个单位后得到的直线l所对应的函数关系式为y=﹣x+m(m>0),
设直线l与x轴、y轴分别交于点A、B,(如图所示)
当x=0时,y=m;当y=0时,x=m,
∴A(m,0),B(0,m),
即OA=m,OB=m,
在Rt△OAB中,AB=,
过点O作OD⊥AB于D,
∵S△ABO=OD•AB=OA•OB,
∴OD•=×m×m,
∵m>0,解得OD=m,
由直线与圆的位置关系可知m <6,解得m<,
故答案为0
【点睛】本题考查了直线的平移、直线与圆的位置关系等,能用含m的式子表示出原点到平移后的直线的距离是解题的关键.本题有一定的难度,利用数形结合思想进行解答比较直观明了.
12、4π﹣1
【解析】
分析:连结OC,根据勾股定理可求OC的长,根据题意可得出阴影部分的面积=扇形BOC的面积-三角形ODC的面积,依此列式计算即可求解.
详解:
连接OC∵在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是的中点,
∴∠COD=45°,
∴OC=CD=4,
∴阴影部分的面积=扇形BOC的面积-三角形ODC的面积
==4π-1.
故答案是:4π-1.
点睛:考查了正方形的性质和扇形面积的计算,解题的关键是得到扇形半径的长度.
13、 cm
【解析】
利用已知得出底面圆的半径为:1cm,周长为2πcm,进而得出母线长,即可得出答案.
【详解】
∵半径为1cm的圆形,
∴底面圆的半径为:1cm,周长为2πcm,
扇形弧长为:2π=,
∴R=4,即母线为4cm,
∴圆锥的高为:(cm).
故答案为cm.
【点睛】
此题主要考查了圆锥展开图与原图对应情况,以及勾股定理等知识,根据已知得出母线长是解决问题的关键.
14、a≥﹣1.
【解析】
根据二次根式的被开方数为非负数,可以得出关于a的不等式,继而求得a的取值范围.
【详解】
由分析可得,a+1≥0,
解得:a≥﹣1.
【点睛】
熟练掌握二次根式被开方数为非负数是解答本题的关键.
15、18π
【解析】
根据“三叶草”图案中阴影部分的面积为三个扇形面积的和,利用扇形面积公式解答即可.
【详解】
解:∵正六边形的内角为=120°,
∴扇形的圆心角为360°−120°=240°,
∴“三叶草”图案中阴影部分的面积为=18π,
故答案为18π.
【点睛】
此题考查正多边形与圆,关键是根据“三叶草”图案中阴影部分的面积为三个扇形面积的和解答.
16、1
【解析】
根据a2+b2=(a+b)2-2ab,代入计算即可.
【详解】
∵a+b=3,ab=2,
∴a2+b2=(a+b)2﹣2ab=9﹣4=1.
故答案为:1.
【点睛】
本题考查对完全平方公式的变形应用能力,要熟记有关完全平方的几个变形公式.
三、解答题(共8题,共72分)
17、,1+
【解析】
运用公式化简,再代入求值.
【详解】
原式=
=
= ,
当x=+1时,
原式=.
【点睛】
考查分式的化简求值、整式的化简求值,解答本题的关键是明确它们各自的计算方法.
18、(1)证明见解析(2)
【解析】
试题分析:(1)先根据四边形ABCD是矩形,得出AD∥BC,∠PDO=∠QBO,再根据O为BD的中点得出△POD≌△QOB,即可证得OP=OQ;
(2)根据已知条件得出∠A的度数,再根据AD=8cm,AB=6cm,得出BD和OD的长,再根据四边形PBQD是菱形时,利用勾股定理即可求出t的值,判断出四边形PBQD是菱形.
试题解析:(1)证明:因为四边形ABCD是矩形,
所以AD∥BC,
所以∠PDO=∠QBO,
又因为O为BD的中点,
所以OB=OD,
在△POD与△QOB中,
∠PDO=∠QBO,OB=OD,∠POD=∠QOB,
所以△POD≌△QOB,
所以OP=OQ.
(2)解:PD=8-t,
因为四边形PBQD是菱形,
所以PD=BP=8-t,
因为四边形ABCD是矩形,
所以∠A=90°,
在Rt△ABP中,
由勾股定理得:,
即,
解得:t=,
即运动时间为秒时,四边形PBQD是菱形.
考点:矩形的性质;菱形的性质;全等三角形的判断和性质勾股定理.
19、或
【解析】
把代入二元一次方程组得到关于a,b的方程组,经过整理,得到关于b的一元二次方程,解之即可得到b的值,把b的值代入一个关于a,b的二元一次方程,求出a的值,即可得到答案.
【详解】
把代入二元一次方程组得:
,
由①得:a=1+b,
把a=1+b代入②,整理得:
b2+b-2=0,
解得:b= -2或b=1,
把b= -2代入①得:a+2=1,
解得:a= -1,
把b=1代入①得:
a-1=1,
解得:a=2,
即或.
【点睛】
本题考查了二元一次方程组的解,正确掌握代入法是解题的关键.
20、小军的证明:见解析;小俊的证明:见解析;[变式探究]见解析;[结论运用]PG+PH的值为1;[迁移拓展](6+2)dm
【解析】
小军的证明:连接AP,利用面积法即可证得;
小俊的证明:过点P作PG⊥CF,先证明四边形PDFG为矩形,再证明△PGC≌△CEP,即可得到答案;
[变式探究]小军的证明思路:连接AP,根据S△ABC=S△ABP﹣S△ACP,即可得到答案;
小俊的证明思路:过点C,作CG⊥DP,先证明四边形CFDG是矩形,再证明△CGP≌△CEP即可得到答案;
[结论运用] 过点E作EQ⊥BC,先根据矩形的性质求出BF,根据翻折及勾股定理求出DC,证得四边形EQCD是矩形,得出BE=BF即可得到答案;
[迁移拓展]延长AD,BC交于点F,作BH⊥AF,证明△ADE∽△BCE得到FA=FB,设DH=x,利用勾股定理求出x得到BH=6,再根据∠ADE=∠BCE=90°,且M,N分别为AE,BE的中点即可得到答案.
【详解】
小军的证明:
连接AP,如图②
∵PD⊥AB,PE⊥AC,CF⊥AB,
∴S△ABC=S△ABP+S△ACP,
∴AB×CF=AB×PD+AC×PE,
∵AB=AC,
∴CF=PD+PE.
小俊的证明:
过点P作PG⊥CF,如图2,
∵PD⊥AB,CF⊥AB,PG⊥FC,
∴∠CFD=∠FDG=∠FGP=90°,
∴四边形PDFG为矩形,
∴DP=FG,∠DPG=90°,
∴∠CGP=90°,
∵PE⊥AC,
∴∠CEP=90°,
∴∠PGC=∠CEP,
∵∠BDP=∠DPG=90°,
∴PG∥AB,
∴∠GPC=∠B,
∵AB=AC,
∴∠B=∠ACB,
∴∠GPC=∠ECP,
在△PGC和△CEP中
,
∴△PGC≌△CEP,
∴CG=PE,
∴CF=CG+FG=PE+PD;
[变式探究]
小军的证明思路:连接AP,如图③,
∵PD⊥AB,PE⊥AC,CF⊥AB,
∴S△ABC=S△ABP﹣S△ACP,
∴AB×CF=AB×PD﹣AC×PE,
∵AB=AC,
∴CF=PD﹣PE;
小俊的证明思路:
过点C,作CG⊥DP,如图③,
∵PD⊥AB,CF⊥AB,CG⊥DP,
∴∠CFD=∠FDG=∠DGC=90°,
∴CF=GD,∠DGC=90°,四边形CFDG是矩形,
∵PE⊥AC,
∴∠CEP=90°,
∴∠CGP=∠CEP,
∵CG⊥DP,AB⊥DP,
∴∠CGP=∠BDP=90°,
∴CG∥AB,
∴∠GCP=∠B,
∵AB=AC,
∴∠B=∠ACB,
∵∠ACB=∠PCE,
∴∠GCP=∠ECP,
在△CGP和△CEP中,
,
∴△CGP≌△CEP,
∴PG=PE,
∴CF=DG=DP﹣PG=DP﹣PE.
[结论运用]
如图④
过点E作EQ⊥BC,
∵四边形ABCD是矩形,
∴AD=BC,∠C=∠ADC=90°,
∵AD=8,CF=3,
∴BF=BC﹣CF=AD﹣CF=5,
由折叠得DF=BF,∠BEF=∠DEF,
∴DF=5,
∵∠C=90°,
∴DC==1,
∵EQ⊥BC,∠C=∠ADC=90°,
∴∠EQC=90°=∠C=∠ADC,
∴四边形EQCD是矩形,
∴EQ=DC=1,
∵AD∥BC,
∴∠DEF=∠EFB,
∵∠BEF=∠DEF,
∴∠BEF=∠EFB,
∴BE=BF,
由问题情景中的结论可得:PG+PH=EQ,
∴PG+PH=1.
∴PG+PH的值为1.
[迁移拓展]
延长AD,BC交于点F,作BH⊥AF,如图⑤,
∵AD×CE=DE×BC,
∴,
∵ED⊥AD,EC⊥CB,
∴∠ADE=∠BCE=90°,
∴△ADE∽△BCE,
∴∠A=∠CBE,
∴FA=FB,
由问题情景中的结论可得:ED+EC=BH,
设DH=x,
∴AH=AD+DH=3+x,
∵BH⊥AF,
∴∠BHA=90°,
∴BH2=BD2﹣DH2=AB2﹣AH2,
∵AB=2,AD=3,BD=,
∴()2﹣x2=(2)2﹣(3+x)2,
∴x=1,
∴BH2=BD2﹣DH2=37﹣1=36,
∴BH=6,
∴ED+EC=6,
∵∠ADE=∠BCE=90°,且M,N分别为AE,BE的中点,
∴DM=EM=AE,CN=EN=BE,
∴△DEM与△CEN的周长之和
=DE+DM+EM+CN+EN+EC
=DE+AE+BE+EC
=DE+AB+EC
=DE+EC+AB
=6+2,
∴△DEM与△CEN的周长之和(6+2)dm.
【点睛】
此题是一道综合题,考查三角形全等的判定及性质,勾股定理,矩形的性质定理,三角形的相似的判定及性质定理,翻折的性质,根据题中小军和小俊的思路进行证明,故正确理解题意由此进行后面的证明是解题的关键.
21、(1)画图见解析;(2)画图见解析;(3)画图见解析.
【解析】
试题分析:(1)、根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;(2)、根据网格结构找出点A、B、C关于原点的对称点A2、B2、C2的位置,然后顺次连接即可;(3)、找出点A关于x轴的对称点A′,连接A′B与x轴相交于一点,根据轴对称确定最短路线问题,交点即为所求的点P的位置,然后连接AP、BP并根据图象写出点P的坐标即可.
试题解析:(1)、△A1B1C1如图所示;B1点的坐标(-4,2)
(2)、△A2B2C2如图所示;B2点的坐标:(-4,-2)
(3)、△PAB如图所示,P(2,0).
考点:(1)、作图-旋转变换;(2)、轴对称-最短路线问题;(3)、作图-平移变换.
22、(1)△ACD 与△ABC相似;(2)AC2=AB•AD成立.
【解析】
(1)求出∠ADC=∠ACB=90°,根据相似三角形的判定推出即可;
(2)根据相似三角形的性质得出比例式,再进行变形即可.
【详解】
解:(1)△ACD 与△ABC相似,
理由是:∵在 Rt△ABC 中,∠ACB=90°,CD 是斜边AB上的高,
∴∠ADC=∠ACB=90°,
∵∠A=∠A,
∴△ACD∽∠ABC;
(2)AC2=AB•AD成立,理由是:
∵△ACD∽∠ABC,
∴=,
∴AC2=AB•AD.
【点睛】
本题考查了相似三角形的性质和判定,能根据相似三角形的判定定理推出△ACD∽△ABC 是解此题的关键.
23、x=3
【解析】
先去分母,再解方程,然后验根.
【详解】
解:去分母,得1-3(x-2)=1-x,1-3x+6=1-x,x=3,经检验,x=3是原方程的根.
【点睛】
此题重点考察学生对分式方程解的应用,掌握分式方程的解法是解题的关键.
24、(1);(2)k=1
【解析】
(1)根据一元二次方程2x2+4x+k﹣1=0有实数根,可得出△≥0,解不等式即可得出结论;
(2)分别把k的正整数值代入方程2x2+4x+k﹣1=0,根据解方程的结果进行分析解答.
【详解】
(1)由题意得:△=16﹣8(k﹣1)≥0,∴k≤1.
(2)∵k为正整数,∴k=1,2,1.
当k=1时,方程2x2+4x+k﹣1=0变为:2x2+4x =0,解得:x=0或x=-2,有一个根为零;
当k=2时,方程2x2+4x+k﹣1=0变为:2x2+4x +1=0,解得:x=,无整数根;
当k=1时,方程2x2+4x+k﹣1=0变为:2x2+4x +2=0,解得:x1=x2=-1,有两个非零的整数根.
综上所述:k=1.
【点睛】
本题考查了一元二次方程根的判别式:
(1)△>0⇔方程有两个不相等的实数根;
(2)△=0⇔方程有两个相等的实数根;
(1)△<0⇔方程没有实数根.
2023年河北省保定市雄县中考数学一模试卷(含解析): 这是一份2023年河北省保定市雄县中考数学一模试卷(含解析),共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
辽宁省市级名校2021-2022学年中考数学五模试卷含解析: 这是一份辽宁省市级名校2021-2022学年中考数学五模试卷含解析,共15页。试卷主要包含了考生要认真填写考场号和座位序号,估计﹣1的值为,若二次函数的图象经过点,计算-3-1的结果是等内容,欢迎下载使用。
河北省保定市高阳县市级名校2021-2022学年中考数学最后冲刺浓缩精华卷含解析: 这是一份河北省保定市高阳县市级名校2021-2022学年中考数学最后冲刺浓缩精华卷含解析,共22页。试卷主要包含了解分式方程﹣3=时,去分母可得,下列各数中,最小的数是等内容,欢迎下载使用。