|试卷下载
搜索
    上传资料 赚现金
    2021-2022学年贵州省毕节市中考数学四模试卷含解析
    立即下载
    加入资料篮
    2021-2022学年贵州省毕节市中考数学四模试卷含解析01
    2021-2022学年贵州省毕节市中考数学四模试卷含解析02
    2021-2022学年贵州省毕节市中考数学四模试卷含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年贵州省毕节市中考数学四模试卷含解析

    展开
    这是一份2021-2022学年贵州省毕节市中考数学四模试卷含解析,共21页。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S9的值为( )

    A.()6 B.()7 C.()6 D.()7
    2.关于x的一元二次方程x2-4x+k=0有两个相等的实数根,则k的值是( )
    A.2 B.-2 C.4 D.-4
    3.2017年,小榄镇GDP总量约31600000000元,数据31600000000科学记数法表示为(  )
    A.0.316×1010 B.0.316×1011 C.3.16×1010 D.3.16×1011
    4.如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是(  )

    A.3cm B. cm C.2.5cm D. cm
    5.某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于,否则就有危险,那么梯子的长至少为( )
    A.8米 B.米 C.米 D.米
    6.小明调查了班级里20位同学本学期购买课外书的花费情况,并将结果绘制成了如图的统计图.在这20位同学中,本学期购买课外书的花费的众数和中位数分别是(  )

    A.50,50 B.50,30 C.80,50 D.30,50
    7.在实数π,0,,﹣4中,最大的是(  )
    A.π B.0 C. D.﹣4
    8.如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是  

    A. B. C. D.
    9.如果m的倒数是﹣1,那么m2018等于(  )
    A.1 B.﹣1 C.2018 D.﹣2018
    10.由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立方体的个数是(  )

    A.3 B.4 C.5 D.6
    11.太原市出租车的收费标准是:白天起步价8元(即行驶距离不超过3km都需付8元车费),超过3km以后,每增加1km,加收1.6元(不足1km按1km计),某人从甲地到乙地经过的路程是xkm,出租车费为16元,那么x的最大值是(  )
    A.11 B.8 C.7 D.5
    12.今年春节某一天早7:00,室内温度是6℃,室外温度是-2℃,则室内温度比室外温度高( )
    A.-4℃ B.4℃ C.8℃ D.-8℃
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.亚洲陆地面积约为4400万平方千米,将44000000用科学记数法表示为_____.
    14.有下列各式:①;②;③;④.其中,计算结果为分式的是_____.(填序号)
    15.如果两个相似三角形的面积的比是4:9,那么它们对应的角平分线的比是_____.
    16.分解因式: .
    17.数据5,6,7,4,3的方差是 .
    18.(﹣)﹣2﹣(3.14﹣π)0=_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,已知A(3,0),B(0,﹣1),连接AB,过B点作AB的垂线段BC,使BA=BC,连接AC.如图1,求C点坐标;如图2,若P点从A点出发沿x轴向左平移,连接BP,作等腰直角△BPQ,连接CQ,当点P在线段OA上,求证:PA=CQ;在(2)的条件下若C、P,Q三点共线,求此时∠APB的度数及P点坐标.

    20.(6分)如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BC⊥y轴,垂足为点C,连结AB,AC.求该反比例函数的解析式;若△ABC的面积为6,求直线AB的表达式.

    21.(6分)如图,已知在Rt△ABC中,∠ACB=90°,AC>BC,CD是Rt△ABC的高,E是AC的中点,ED的延长线与CB的延长线相交于点F.
    (1)求证:DF是BF和CF的比例中项;
    (2)在AB上取一点G,如果AE•AC=AG•AD,求证:EG•CF=ED•DF.

    22.(8分)某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式;求销售单价为多少元时,该文具每天的销售利润最大;商场的营销部结合上述情况,提出了A、B两种营销方案
    方案A:该文具的销售单价高于进价且不超过30元;
    方案B:每天销售量不少于10件,且每件文具的利润至少为25元
    请比较哪种方案的最大利润更高,并说明理由
    23.(8分)某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下面是水平放置的破裂管道有水部分的截面.若这个输水管道有水部分的水面宽,水面最深地方的高度为4cm,求这个圆形截面的半径.

    24.(10分)为了弘扬我国古代数学发展的伟大成就,某校九年级进行了一次数学知识竞赛,并设立了以我国古代数学家名字命名的四个奖项:“祖冲之奖”、“刘徽奖”、“赵爽奖”和“杨辉奖”,根据获奖情况绘制成如图1和图2所示的条形统计图和扇形统计图,并得到了获“祖冲之奖”的学生成绩统计表:

    “祖冲之奖”的学生成绩统计表:
    分数/分
    80
    85
    90
    95
    人数/人
    4
    2
    10
    4
    根据图表中的信息,解答下列问题:
    (1)这次获得“刘徽奖”的人数是_____,并将条形统计图补充完整;
    (2)获得“祖冲之奖”的学生成绩的中位数是_____分,众数是_____分;
    (3)在这次数学知识竟赛中有这样一道题:一个不透明的盒子里有完全相同的三个小球,球上分别标有数字“﹣2”,“﹣1”和“2”,随机摸出一个小球,把小球上的数字记为x放回后再随机摸出一个小球,把小球上的数字记为y,把x作为横坐标,把y作为纵坐标,记作点(x,y).用列表法或树状图法求这个点在第二象限的概率.
    25.(10分)如图,在△ABC中,ABAC,AE是∠BAC的平分线,∠ABC的平分线BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交AB于点F.
    (1)求证:AE为⊙O的切线;
    (2)当BC=4,AC=6时,求⊙O的半径;
    (3)在(2)的条件下,求线段BG的长.

    26.(12分)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象交于第二、四象限内的A、B两点,与x轴交于点C,点A(﹣2,3),点B(6,n).
    (1)求该反比例函数和一次函数的解析式;
    (2)求△AOB的面积;
    (3)若M(x1,y1),N(x2,y2)是反比例函数y=(m≠0)的图象上的两点,且x1<x2,y1<y2,指出点M、N各位于哪个象限.

    27.(12分)黄石市在创建国家级文明卫生城市中,绿化档次不断提升.某校计划购进A,B两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.
    (1)求A种,B种树木每棵各多少元;
    (2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、A
    【解析】
    试题分析:如图所示.

    ∵正方形ABCD的边长为2,△CDE为等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴S2+S2=S1.观察发现规律:S1=22=4,S2=S1=2,S2=S2=1,S4=S2=,…,由此可得Sn=()n﹣2.当n=9时,S9=()9﹣2=()6,故选A.
    考点:勾股定理.
    2、C
    【解析】
    对于一元二次方程a+bx+c=0,当Δ=-4ac=0时,方程有两个相等的实数根.
    即16-4k=0,解得:k=4.
    考点:一元二次方程根的判别式
    3、C
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    31600000000=3.16×1.故选:C.
    【点睛】
    本题考查科学记数法,解题的关键是掌握科学记数法的表示.
    4、D
    【解析】
    分析:根据垂径定理得出OE的长,进而利用勾股定理得出BC的长,再利用相似三角形的判定和性质解答即可.
    详解:连接OB,

    ∵AC是⊙O的直径,弦BD⊥AO于E,BD=1cm,AE=2cm.
    在Rt△OEB中,OE2+BE2=OB2,即OE2+42=(OE+2)2
    解得:OE=3,
    ∴OB=3+2=5,
    ∴EC=5+3=1.
    在Rt△EBC中,BC=.
    ∵OF⊥BC,
    ∴∠OFC=∠CEB=90°.
    ∵∠C=∠C,
    ∴△OFC∽△BEC,
    ∴,即,
    解得:OF=.
    故选D.
    点睛:本题考查了垂径定理,关键是根据垂径定理得出OE的长.
    5、C
    【解析】
    此题考查的是解直角三角形
    如图:AC=4,AC⊥BC,

    ∵梯子的倾斜角(梯子与地面的夹角)不能>60°.
    ∴∠ABC≤60°,最大角为60°.

    即梯子的长至少为米,
    故选C.
    6、A
    【解析】
    分析:根据扇形统计图分别求出购买课外书花费分别为100、80、50、30、20元的同学人数,再根据众数、中位数的定义即可求解.
    详解:由扇形统计图可知,购买课外书花费为100元的同学有:20×10%=2(人),购买课外书花费为80元的同学有:20×25%=5(人),购买课外书花费为50元的同学有:20×40%=8(人),购买课外书花费为30元的同学有:20×20%=4(人),购买课外书花费为20元的同学有:20×5%=1(人),20个数据为100,100,80,80,80,80,80,50,50,50,50,50,50,50,50,30,30,30,30,20,在这20位同学中,本学期计划购买课外书的花费的众数为50元,中位数为(50+50)÷2=50(元).
    故选A.
    点睛:本题考查了扇形统计图,平均数,中位数与众数,注意掌握通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.
    7、C
    【解析】
    根据实数的大小比较即可得到答案.
    【详解】
    解:∵16<17<25,∴4<<5,∴>π>0>-4,故最大的是,故答案选C.
    【点睛】
    本题主要考查了实数的大小比较,解本题的要点在于统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.
    8、C
    【解析】
    如图作,FN∥AD,交AB于N,交BE于M.设DE=a,则AE=3a,利用平行线分线段成比例定理解决问题即可.
    【详解】
    如图作,FN∥AD,交AB于N,交BE于M.

    ∵四边形ABCD是正方形,
    ∴AB∥CD,∵FN∥AD,
    ∴四边形ANFD是平行四边形,
    ∵∠D=90°,
    ∴四边形ANFD是矩形,
    ∵AE=3DE,设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,
    ∵AN=BN,MN∥AE,
    ∴BM=ME,
    ∴MN=a,
    ∴FM=a,
    ∵AE∥FM,
    ∴,
    故选C.
    【点睛】
    本题考查正方形的性质、平行线分线段成比例定理、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用参数解决问题,属于中考常考题型.
    9、A
    【解析】
    因为两个数相乘之积为1,则这两个数互为倒数, 如果m的倒数是﹣1,则m=-1,
    然后再代入m2018计算即可.
    【详解】
    因为m的倒数是﹣1,
    所以m=-1,
    所以m2018=(-1)2018=1,故选A.
    【点睛】
    本题主要考查倒数的概念和乘方运算,解决本题的关键是要熟练掌握倒数的概念和乘方运算法则.
    10、B
    【解析】
    分析:从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.
    解答:解:从主视图看第一列两个正方体,说明俯视图中的左边一列有两个正方体,主视图右边的一列只有一行,说明俯视图中的右边一行只有一列,所以此几何体共有四个正方体.故选B.
    11、B
    【解析】
    根据等量关系,即(经过的路程﹣3)×1.6+起步价2元≤1.列出不等式求解.
    【详解】
    可设此人从甲地到乙地经过的路程为xkm,
    根据题意可知:(x﹣3)×1.6+2≤1,
    解得:x≤2.
    即此人从甲地到乙地经过的路程最多为2km.
    故选B.
    【点睛】
    考查了一元一次方程的应用.关键是掌握正确理解题意,找出题目中的数量关系.
    12、C
    【解析】
    根据题意列出算式,计算即可求出值.
    【详解】
    解:根据题意得:6-(-2)=6+2=8,
    则室内温度比室外温度高8℃,
    故选:C.
    【点睛】
    本题考查了有理数的减法,熟练掌握运算法则是解题的关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、4.4×1
    【解析】
    分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    详解:44000000=4.4×1,
    故答案为4.4×1.
    点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    14、②④
    【解析】
    根据分式的定义,将每个式子计算后,即可求解.
    【详解】
    =1不是分式,=,=3不是分式,=故选②④.
    【点睛】
    本题考查分式的判断,解题的关键是清楚分式的定义.
    15、2:1
    【解析】
    先根据相似三角形面积的比是4:9,求出其相似比是2:1,再根据其对应的角平分线的比等于相似比,可知它们对应的角平分线比是2:1.
    故答案为2:1.
    点睛:本题考查的是相似三角形的性质,即相似三角形对应边的比、对应高线的比、对应角平分线的比、周长的比都等于相似比;面积的比等于相似比的平方.
    16、
    【解析】
    分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,
    先提取公因式后继续应用平方差公式分解即可:.
    17、1
    【解析】
    先求平均数,再根据方差的公式S1=[(x1-)1+(x1-)1+…+(xn-)1]计算即可.
    【详解】
    解:∵=(5+6+7+4+3)÷5=5,
    ∴数据的方差S1=×[(5-5)1+(6-5)1+(7-5)1+(4-5)1+(3-5)1]=1.
    故答案为:1.
    考点:方差.
    18、3.
    【解析】
    试题分析:分别根据零指数幂,负指数幂的运算法则计算,然后根据实数的运算法则求得计算结果.
    原式=4-1=3.
    考点:负整数指数幂;零指数幂.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)C(1,-4).(2)证明见解析;(3)∠APB=135°,P(1,0).
    【解析】
    (1)作CH⊥y轴于H,证明△ABO≌△BCH,根据全等三角形的性质得到BH=OA=3,CH=OB=1,求出OH,得到C点坐标;
    (2)证明△PBA≌△QBC,根据全等三角形的性质得到PA=CQ;
    (3)根据C、P,Q三点共线,得到∠BQC=135°,根据全等三角形的性质得到∠BPA=∠BQC=135°,根据等腰三角形的性质求出OP,得到P点坐标.
    【详解】
    (1)作CH⊥y轴于H,

    则∠BCH+∠CBH=90°,
    ∵AB⊥BC,
    ∴∠ABO+∠CBH=90°,
    ∴∠ABO=∠BCH,
    在△ABO和△BCH中,

    ∴△ABO≌△BCH,
    ∴BH=OA=3,CH=OB=1,
    ∴OH=OB+BH=4,
    ∴C点坐标为(1,﹣4);
    (2)∵∠PBQ=∠ABC=90°,
    ∴∠PBQ﹣∠ABQ=∠ABC﹣∠ABQ,即∠PBA=∠QBC,
    在△PBA和△QBC中,

    ∴△PBA≌△QBC,
    ∴PA=CQ;
    (3)∵△BPQ是等腰直角三角形,
    ∴∠BQP=45°,
    当C、P,Q三点共线时,∠BQC=135°,
    由(2)可知,△PBA≌△QBC,
    ∴∠BPA=∠BQC=135°,
    ∴∠OPB=45°,
    ∴OP=OB=1,
    ∴P点坐标为(1,0).
    【点睛】
    本题考查的是全等三角形的判定和性质、三角形的外角的性质,掌握全等三角形的判定定理和性质定理是解题的关键.
    20、(1)y;(2)yx+1.
    【解析】
    (1)把A的坐标代入反比例函数的解析式即可求得;
    (2)作AD⊥BC于D,则D(2,b),即可利用a表示出AD的长,然后利用三角形的面积公式即可得到一个关于b的方程,求得b的值,进而求得a的值,根据待定系数法,可得答案.
    【详解】
    (1)由题意得:k=xy=2×3=6,
    ∴反比例函数的解析式为y;
    (2)设B点坐标为(a,b),如图,作AD⊥BC于D,则D(2,b),

    ∵反比例函数y的图象经过点B(a,b),
    ∴b,
    ∴AD=3,
    ∴S△ABCBC•ADa(3)=6,
    解得a=6,
    ∴b1,
    ∴B(6,1),
    设AB的解析式为y=kx+b,将A(2,3),B(6,1)代入函数解析式,得
    ,解得:,
    所以直线AB的解析式为yx+1.
    【点睛】
    本题考查了利用待定系数法求反比例函数以及一次函数解析式,熟练掌握待定系数法以及正确表示出BC,AD的长是解题的关键.
    21、证明见解析
    【解析】
    试题分析:(1)根据已知求得∠BDF=∠BCD,再根据∠BFD=∠DFC,证明△BFD∽△DFC,从而得BF:DF=DF:FC,进行变形即得;
    (2)由已知证明△AEG∽△ADC,得到∠AEG=∠ADC=90°,从而得EG∥BC,继而得 ,
    由(1)可得 ,从而得 ,问题得证.
    试题解析:(1)∵∠ACB=90°,∴∠BCD+∠ACD=90°,
    ∵CD是Rt△ABC的高,∴∠ADC=∠BDC=90°,∴∠A+∠ACD=90°,∴∠A=∠BCD,
    ∵E是AC的中点,
    ∴DE=AE=CE,∴∠A=∠EDA,∠ACD=∠EDC,
    ∵∠EDC+∠BDF=180°-∠BDC=90°,∴∠BDF=∠BCD,
    又∵∠BFD=∠DFC,
    ∴△BFD∽△DFC,
    ∴BF:DF=DF:FC,
    ∴DF2=BF·CF;
    (2)∵AE·AC=ED·DF,
    ∴ ,
    又∵∠A=∠A,
    ∴△AEG∽△ADC,
    ∴∠AEG=∠ADC=90°,
    ∴EG∥BC,
    ∴ ,
    由(1)知△DFD∽△DFC,
    ∴ ,
    ∴ ,
    ∴EG·CF=ED·DF.
    22、 (1) w=-10x2+700x-10000;(2) 即销售单价为35元时,该文具每天的销售利润最大;
    (3) A方案利润更高.
    【解析】
    试题分析:(1)根据利润=(单价-进价)×销售量,列出函数关系式即可.
    (2)根据(1)式列出的函数关系式,运用配方法求最大值.
    (3)分别求出方案A、B中x的取值范围,然后分别求出A、B方案的最大利润,然后进行比较.
    【详解】
    解:(1)w=(x-20)(250-10x+250)=-10x2+700x-10000.
    (2)∵w=-10x2+700x-10000=-10(x-35)2+2250
    ∴当x=35时,w有最大值2250,
    即销售单价为35元时,该文具每天的销售利润最大.
    (3)A方案利润高,理由如下:
    A方案中:20<x≤30,函数w=-10(x-35)2+2250随x的增大而增大,
    ∴当x=30时,w有最大值,此时,最大值为2000元.
    B方案中:,解得x的取值范围为:45≤x≤49.
    ∵45≤x≤49时,函数w=-10(x-35)2+2250随x的增大而减小,
    ∴当x=45时,w有最大值,此时,最大值为1250元.
    ∵2000>1250,
    ∴A方案利润更高
    23、这个圆形截面的半径为10cm.
    【解析】
    分析:先作辅助线,利用垂径定理求出半径,再根据勾股定理计算.
    解答:解:如图,OE⊥AB交AB于点D,

    则DE=4,AB=16,AD=8,
    设半径为R,
    ∴OD=OE-DE=R-4,
    由勾股定理得,OA2=AD2+OD2,
    即R2=82+(R-4)2,
    解得,R=10cm.
    24、(1)刘徽奖的人数为人,补全统计图见解析;(2)获得“祖冲之奖”的学生成绩的中位数是90分,众数是90分;(3)(点在第二象限).
    【解析】
    (1)先根据祖冲之奖的人数及其百分比求得总人数,再根据扇形图求出赵爽奖、杨辉奖的人数,继而根据各奖项的人数之和等于总人数求得刘徽奖的人数,据此可得;
    (2)根据中位数和众数的定义求解可得;
    (3)列表得出所有等可能结果,再找到这个点在第二象限的结果,根据概率公式求解可得.
    【详解】
    (1)∵获奖的学生人数为20÷10%=200人,∴赵爽奖的人数为200×24%=48人,杨辉奖的人数为200×46%=92人,则刘徽奖的人数为200﹣(20+48+92)=40,补全统计图如下:

    故答案为40;
    (2)获得“祖冲之奖”的学生成绩的中位数是90分,众数是90分.
    故答案为90、90;
    (3)列表法:

    ∵第二象限的点有(﹣2,2)和(﹣1,2),∴P(点在第二象限).
    【点睛】
    本题考查了用列表法或画树状图法求概率、频数分布直方图以及利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,也考查列表法或画树状图法求概率.
    25、(1)证明见解析;(2);(3)1.
    【解析】
    (1)连接OM,如图1,先证明OM∥BC,再根据等腰三角形的性质判断AE⊥BC,则OM⊥AE,然后根据切线的判定定理得到AE为⊙O的切线;
    (2)设⊙O的半径为r,利用等腰三角形的性质得到BE=CE=BC=2,再证明△AOM∽△ABE,则利用相似比得到,然后解关于r的方程即可;
    (3)作OH⊥BE于H,如图,易得四边形OHEM为矩形,则HE=OM=,所以BH=BE-HE=,再根据垂径定理得到BH=HG=,所以BG=1.
    【详解】
    解:(1)证明:连接OM,如图1,

    ∵BM是∠ABC的平分线,
    ∴∠OBM=∠CBM,
    ∵OB=OM,
    ∴∠OBM=∠OMB,
    ∴∠CBM=∠OMB,
    ∴OM∥BC,
    ∵AB=AC,AE是∠BAC的平分线,
    ∴AE⊥BC,
    ∴OM⊥AE,
    ∴AE为⊙O的切线;
    (2)解:设⊙O的半径为r,
    ∵AB=AC=6,AE是∠BAC的平分线,
    ∴BE=CE=BC=2,
    ∵OM∥BE,
    ∴△AOM∽△ABE,
    ∴,即,解得r=,
    即设⊙O的半径为;
    (3)解:作OH⊥BE于H,如图,

    ∵OM⊥EM,ME⊥BE,
    ∴四边形OHEM为矩形,
    ∴HE=OM=,
    ∴BH=BE﹣HE=2﹣=,
    ∵OH⊥BG,
    ∴BH=HG=,
    ∴BG=2BH=1.
    26、 (1)反比例函数的解析式为y=﹣;一次函数的解析式为y=﹣x+2;(2)8;(3)点M、N在第二象限,或点M、N在第四象限.
    【解析】
    (1)把A(﹣2,3)代入y=,可得m=﹣2×3=﹣6,
    ∴反比例函数的解析式为y=﹣;
    把点B(6,n)代入,可得n=﹣1,
    ∴B(6,﹣1).
    把A(﹣2,3),B(6,﹣1)代入y=kx+b,可得,
    解得,
    ∴一次函数的解析式为y=﹣x+2;
    (2)∵y=﹣x+2,令y=0,则x=4,
    ∴C(4,0),即OC=4,
    ∴△AOB的面积=×4×(3+1)=8;
    (3)∵反比例函数y=﹣的图象位于二、四象限,
    ∴在每个象限内,y随x的增大而增大,
    ∵x1<x2,y1<y2,
    ∴M,N在相同的象限,
    ∴点M、N在第二象限,或点M、N在第四象限.
    【点睛】
    本题考查了反比例函数与一次函数的交点问题,求三角形的面积,求函数的解析式,正确掌握反比例函数的性质是解题的关键.
    27、 (1) A种树每棵2元,B种树每棵80元;(2) 当购买A种树木1棵,B种树木25棵时,所需费用最少,最少为8550元.
    【解析】
    (1)设A种树每棵x元,B种树每棵y元,根据“购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元”列出方程组并解答;
    (2)设购买A种树木为x棵,则购买B种树木为(2-x)棵,根据“购买A种树木的数量不少于B种树木数量的3倍”列出不等式并求得x的取值范围,结合实际付款总金额=0.9(A种树的金额+B种树的金额)进行解答.
    【详解】
    解:(1)设A种树木每棵x元,B种树木每棵y元,根据题意,得
    ,解得 ,
    答:A种树木每棵2元,B种树木每棵80元.
    (2)设购买A种树木x棵,则B种树木(2-x)棵,则x≥3(2-x).解得x≥1.
    又2-x≥0,解得x≤2.∴1≤x≤2.
    设实际付款总额是y元,则y=0.9[2x+80(2-x)].
    即y=18x+7 3.
    ∵18>0,y随x增大而增大,∴当x=1时,y最小为18×1+7 3=8 550(元).
    答:当购买A种树木1棵,B种树木25棵时,所需费用最少,为8 550元.

    相关试卷

    2024年贵州省毕节市金沙县中考数学一模试卷(含详细答案解析): 这是一份2024年贵州省毕节市金沙县中考数学一模试卷(含详细答案解析),共21页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。

    2024年贵州省毕节市金沙县中考数学一模试卷(含解析): 这是一份2024年贵州省毕节市金沙县中考数学一模试卷(含解析),共22页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。

    2022-2023学年贵州省毕节市中考数学专项提升模拟试题(一模二模)含解析: 这是一份2022-2023学年贵州省毕节市中考数学专项提升模拟试题(一模二模)含解析,共40页。试卷主要包含了 π、中,在理数的个数是,3×103B, 下列运算正确的是, 下列说确的是, 已知一组数据等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map