终身会员
搜索
    上传资料 赚现金

    2021-2022学年黑龙江省齐齐哈尔市中考数学最后冲刺模拟试卷含解析

    立即下载
    加入资料篮
    2021-2022学年黑龙江省齐齐哈尔市中考数学最后冲刺模拟试卷含解析第1页
    2021-2022学年黑龙江省齐齐哈尔市中考数学最后冲刺模拟试卷含解析第2页
    2021-2022学年黑龙江省齐齐哈尔市中考数学最后冲刺模拟试卷含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年黑龙江省齐齐哈尔市中考数学最后冲刺模拟试卷含解析

    展开

    这是一份2021-2022学年黑龙江省齐齐哈尔市中考数学最后冲刺模拟试卷含解析,共21页。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.估计-1的值在( )
    A.0到1之间 B.1到2之间 C.2到3之间 D.3至4之间
    2.如图,在平面直角坐标系中,直线y=k1x+2(k1≠0)与x轴交于点A,与y轴交于点B,与反比例函数y=在第二象限内的图象交于点C,连接OC,若S△OBC=1,tan∠BOC=,则k2的值是(  )

    A.3 B.﹣ C.﹣3 D.﹣6
    3.如图,AB为⊙O的直径,C,D为⊙O上的两点,若AB=14,BC=1.则∠BDC的度数是(  )

    A.15° B.30° C.45° D.60°
    4.如图,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.9米,则梯子顶端A下落了(  )

    A.0.9米 B.1.3米 C.1.5米 D.2米
    5.如图,在平面直角坐标系中,点A在x轴的正半轴上,点B的坐标为(0,4),将△ABO绕点B逆时针旋转60°后得到△A'BO',若函数y=(x>0)的图象经过点O',则k的值为(  )

    A.2 B.4 C.4 D.8
    6.如图,在正方形网格中建立平面直角坐标系,若,,则点C的坐标为( )

    A. B. C. D.
    7.某中学篮球队12名队员的年龄如下表:
    年龄:(岁)
    13
    14
    15
    16
    人数
    1
    5
    4
    2
    关于这12名队员的年龄,下列说法错误的是( )
    A.众数是14岁 B.极差是3岁 C.中位数是14.5岁 D.平均数是14.8岁
    8.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于(  )

    A.132° B.134° C.136° D.138°
    9.如图是棋盘的一部分,建立适当的平面直角坐标系,已知棋子“车”的坐标为(-2,1),棋子“马”的坐标为(3,-1),则棋子“炮”的坐标为( )

    A.(1,1) B.(2,1) C.(2,2) D.(3,1)
    10.若关于x的方程 是一元二次方程,则m的取值范围是( )
    A.. B.. C. D..
    11.如图是某几何体的三视图,则该几何体的全面积等于(  )

    A.112 B.136 C.124 D.84
    12.如图所示是8个完全相同的小正方体组成的几何体,则该几何体的左视图是( )

    A. B.
    C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.已知在Rt△ABC中,∠C=90°,BC=5,AC=12,E为线段AB的中点,D点是射线AC上的一个动点,将△ADE沿线段DE翻折,得到△A′DE,当A′D⊥AB时,则线段AD的长为_____.

    14.如图,在圆O中,AB为直径,AD为弦,过点B的切线与AD的延长线交于点C,AD=DC,则∠C=________度.

    15.圆锥的底面半径为2,母线长为6,则它的侧面积为_____.
    16.如图,AB,AC分别为⊙O的内接正六边形,内接正方形的一边,BC是圆内接n边形的一边,则n等于_____.

    17.如果抛物线y=ax2+5的顶点是它的最低点,那么a的取值范围是_____.
    18.如图是由大小完全相同的正六边形组成的图形,小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色,则上方的正六边形涂红色的概率是_______.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)解不等式组:,并求出该不等式组所有整数解的和.
    20.(6分)关于的一元二次方程.求证:方程总有两个实数根;若方程有一根小于1,求的取值范围.
    21.(6分)先化简,再求值:,其中.
    22.(8分)如图,一个长方形运动场被分隔成A、B、A、B、C共5个区,A区是边长为am的正方形,C区是边长为bm的正方形.列式表示每个B区长方形场地的周长,并将式子化简;列式表示整个长方形运动场的周长,并将式子化简;如果a=20,b=10,求整个长方形运动场的面积.

    23.(8分)如图,AB=16,O为AB中点,点C在线段OB上(不与点O,B重合),将OC绕点O逆时针旋转 270°后得到扇形COD,AP,BQ分别切优弧CD于点P,Q,且点P,Q在AB异侧,连接OP.
    求证:AP=BQ;当BQ= 时,求的长(结果保留 );若△APO的外心在扇形COD的内部,求OC的取值范围.
    24.(10分)我市某中学艺术节期间,向全校学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.王老师采取的调查方式是 (填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共 件,其中b班征集到作品 件,请把图2补充完整;王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参加学校总结表彰座谈会,请直接写出恰好抽中一男一女的概率.

    25.(10分)(1)计算:sin45°
    (2)解不等式组:
    26.(12分)已知A(﹣4,2)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数y=图象的两个交点.求一次函数和反比例函数的解析式;求△AOB的面积;观察图象,直接写出不等式kx+b﹣>0的解集.

    27.(12分)如图,四边形ABCD,AD∥BC,DC⊥BC于C点,AE⊥BD于E,且DB=DA.求证:AE=CD.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    试题分析:∵2<<3,
    ∴1<-1<2,
    即-1在1到2之间,
    故选B.
    考点:估算无理数的大小.
    2、C
    【解析】
    如图,作CH⊥y轴于H.通过解直角三角形求出点C坐标即可解决问题.
    【详解】
    解:如图,作CH⊥y轴于H.

    由题意B(0,2),

    ∴CH=1,
    ∵tan∠BOC=
    ∴OH=3,
    ∴C(﹣1,3),
    把点C(﹣1,3)代入,得到k2=﹣3,
    故选C.
    【点睛】
    本题考查反比例函数于一次函数的交点问题,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
    3、B
    【解析】
    只要证明△OCB是等边三角形,可得∠CDB=∠COB即可解决问题.
    【详解】
    如图,连接OC,

    ∵AB=14,BC=1,
    ∴OB=OC=BC=1,
    ∴△OCB是等边三角形,
    ∴∠COB=60°,
    ∴∠CDB=∠COB=30°,
    故选B.
    【点睛】
    本题考查圆周角定理,等边三角形的判定等知识,解题的关键是学会利用数形结合的首先解决问题,属于中考常考题型.
    4、B
    【解析】
    试题分析:要求下滑的距离,显然需要分别放到两个直角三角形中,运用勾股定理求得AC和CE的长即可.
    解:在Rt△ACB中,AC2=AB2﹣BC2=2.52﹣1.52=1,
    ∴AC=2,
    ∵BD=0.9,
    ∴CD=2.1.
    在Rt△ECD中,EC2=ED2﹣CD2=2.52﹣2.12=0.19,
    ∴EC=0.7,
    ∴AE=AC﹣EC=2﹣0.7=1.2.
    故选B.
    考点:勾股定理的应用.
    5、C
    【解析】
    根据题意可以求得点O'的坐标,从而可以求得k的值.
    【详解】
    ∵点B的坐标为(0,4),
    ∴OB=4,
    作O′C⊥OB于点C,
    ∵△ABO绕点B逆时针旋转60°后得到△A'BO',
    ∴O′B=OB=4,
    ∴O′C=4×sin60°=2,BC=4×cos60°=2,
    ∴OC=2,
    ∴点O′的坐标为:(2,2),
    ∵函数y=(x>0)的图象经过点O',
    ∴2=,得k=4,
    故选C.
    【点睛】
    本题考查了反比例函数图象上点的坐标特征、坐标与图形的变化,解题的关键是利用数形结合的思想和反比例函数的性质解答.
    6、C
    【解析】
    根据A点坐标即可建立平面直角坐标.
    【详解】
    解:由A(0,2),B(1,1)可知原点的位置,

    建立平面直角坐标系,如图,
    ∴C(2,-1)
    故选:C.
    【点睛】
    本题考查平面直角坐标系,解题的关键是建立直角坐标系,本题属于基础题型.
    7、D
    【解析】
    分别利用极差以及中位数和众数以及平均数的求法分别分析得出答案.
    解:由图表可得:14岁的有5人,故众数是14,故选项A正确,不合题意;
    极差是:16﹣13=3,故选项B正确,不合题意;
    中位数是:14.5,故选项C正确,不合题意;
    平均数是:(13+14×5+15×4+16×2)÷12≈14.5,故选项D错误,符合题意.
    故选D.
    “点睛”此题主要考查了极差以及中位数和众数以及平均数的求法,正确把握相关定义是解题关键.
    8、B
    【解析】
    过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.
    解:

    过E作EF∥AB,
    ∵AB∥CD,
    ∴AB∥CD∥EF,
    ∴∠C=∠FEC,∠BAE=∠FEA,
    ∵∠C=44°,∠AEC为直角,
    ∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,
    ∴∠1=180°﹣∠BAE=180°﹣46°=134°,
    故选B.
    “点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.
    9、B
    【解析】
    直接利用已知点坐标建立平面直角坐标系进而得出答案.
    【详解】
    解:根据棋子“车”的坐标为(-2,1),建立如下平面直角坐标系:

    ∴棋子“炮”的坐标为(2,1),
    故答案为:B.
    【点睛】
    本题考查了坐标确定位置,正确建立平面直角坐标系是解题的关键.
    10、A
    【解析】
    根据一元二次方程的定义可得m﹣1≠0,再解即可.
    【详解】
    由题意得:m﹣1≠0,
    解得:m≠1,
    故选A.
    【点睛】
    此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.
    11、B
    【解析】
    试题解析:该几何体是三棱柱.
    如图:

    由勾股定理

    全面积为:
    故该几何体的全面积等于1.
    故选B.
    12、A
    【解析】
    分析:根据主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形,从而得出该几何体的左视图.
    详解:该几何体的左视图是:

    故选A.
    点睛:本题考查了学生的思考能力和对几何体三种视图的空间想象能力.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、或.
    【解析】
    ①延长A'D交AB于H,则A'H⊥AB,然后根据勾股定理算出AB,推断出△ADH∽△ABC,即可解答此题
    ②同①的解题思路一样
    【详解】
    解:分两种情况:
    ①如图1所示:
    设AD=x,延长A'D交AB于H,则A'H⊥AB,
    ∴∠AHD=∠C=90°,
    由勾股定理得:AB==13,
    ∵∠A=∠A,
    ∴△ADH∽△ABC,
    ∴,即,
    解得:DH=x,AH=x,
    ∵E是AB的中点,
    ∴AE=AB=,
    ∴HE=AE﹣AH=﹣x,
    由折叠的性质得:A'D=AD=x,A'E=AE=,
    ∴sin∠A=sin∠A'= ,
    解得:x= ;
    ②如图2所示:设AD=A'D=x,
    ∵A'D⊥AB,
    ∴∠A'HE=90°,
    同①得:A'E=AE=,DH=x,
    ∴A'H=A'D﹣DH=x﹣=x,
    ∴cos∠A=cos∠A'= ,
    解得:x= ;
    综上所述,AD的长为 或.
    故答案为 或.


    【点睛】
    此题考查了勾股定理,三角形相似,关键在于做辅助线
    14、1
    【解析】
    利用圆周角定理得到∠ADB=90°,再根据切线的性质得∠ABC=90°,然后根据等腰三角形的判定方法得到△ABC为等腰直角三角形,从而得到∠C的度数.
    【详解】
    解:∵AB为直径,
    ∴∠ADB=90°,
    ∵BC为切线,
    ∴AB⊥BC,
    ∴∠ABC=90°,
    ∵AD=CD,
    ∴△ABC为等腰直角三角形,
    ∴∠C=1°.
    故答案为1.
    【点睛】
    本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了等腰直角三角形的判定与性质.
    15、12π.
    【解析】
    试题分析:根据圆锥的底面半径为2,母线长为6,直接利用圆锥的侧面积公式求出它的侧面积.
    解:根据圆锥的侧面积公式:πrl=π×2×6=12π,
    故答案为12π.
    考点:圆锥的计算.
    16、12
    【解析】
    连接AO,BO,CO,如图所示:

    ∵AB、AC分别为⊙O的内接正六边形、内接正方形的一边,
    ∴∠AOB==60°,∠AOC==90°,
    ∴∠BOC=30°,
    ∴n==12,
    故答案为12.
    17、a>1 
    【解析】
    根据二次函数的图像,由抛物线y=ax2+5的顶点是它的最低点,知a>1,
    故答案为a>1.
    18、
    【解析】
    试题分析:上方的正六边形涂红色的概率是,故答案为.
    考点:概率公式.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、1
    【解析】
    分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
    【详解】
    解:,
    解不等式①得:x≤3,
    解不等式②得:x>﹣2,
    所以不等式组的解集为:﹣2<x≤3,
    所以所有整数解的和为:﹣1+0+1+2+3=1.
    【点睛】
    本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
    20、(2)见解析;(2)k

    相关试卷

    南京栖霞中学2021-2022学年中考数学最后冲刺模拟试卷含解析:

    这是一份南京栖霞中学2021-2022学年中考数学最后冲刺模拟试卷含解析,共24页。试卷主要包含了考生要认真填写考场号和座位序号,一、单选题等内容,欢迎下载使用。

    黑龙江省克东县市级名校2021-2022学年中考数学最后冲刺模拟试卷含解析:

    这是一份黑龙江省克东县市级名校2021-2022学年中考数学最后冲刺模拟试卷含解析,共22页。试卷主要包含了|﹣3|的值是等内容,欢迎下载使用。

    黑龙江省哈尔滨尚志市市级名校2021-2022学年中考数学最后冲刺模拟试卷含解析:

    这是一份黑龙江省哈尔滨尚志市市级名校2021-2022学年中考数学最后冲刺模拟试卷含解析,共26页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map