2021-2022学年湖北省巴东县中考数学模试卷含解析
展开
这是一份2021-2022学年湖北省巴东县中考数学模试卷含解析,共22页。
2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是( )
A. B.
C. D.
2.如图,在平面直角坐标系中Rt△ABC的斜边BC在x轴上,点B坐标为(1,0),AC=2,∠ABC=30°,把Rt△ABC先绕B点顺时针旋转180°,然后再向下平移2个单位,则A点的对应点A′的坐标为( )
A.(﹣4,﹣2﹣) B.(﹣4,﹣2+) C.(﹣2,﹣2+) D.(﹣2,﹣2﹣)
3.如图,已知AB∥CD,∠1=115°,∠2=65°,则∠C等于( )
A.40° B.45° C.50° D.60°
4.在平面直角坐标系xOy中,若点P(3,4)在⊙O内,则⊙O的半径r的取值范围是( )
A.0<r<3 B.r>4 C.0<r<5 D.r>5
5.据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是( )
A.25和30 B.25和29 C.28和30 D.28和29
6.某中学篮球队12名队员的年龄如下表:
年龄:(岁)
13
14
15
16
人数
1
5
4
2
关于这12名队员的年龄,下列说法错误的是( )
A.众数是14岁 B.极差是3岁 C.中位数是14.5岁 D.平均数是14.8岁
7.如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是( )
A. B. C. D.
8.人的头发直径约为0.00007m,这个数据用科学记数法表示( )
A.0.7×10﹣4 B.7×10﹣5 C.0.7×104 D.7×105
9.如图,A,B,C,D,E,G,H,M,N都是方格纸中的格点(即小正方形的顶点),要使△DEF与△ABC相似,则点F应是G,H,M,N四点中的( )
A.H或N B.G或H C.M或N D.G或M
10.如果将抛物线向右平移1个单位,那么所得的抛物线的表达式是
A. B. C. D.
11.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B点从开始至结束所走过的路径长度为( )
A. B. C.4 D.2+
12.若a是一元二次方程x2﹣x﹣1=0的一个根,则求代数式a3﹣2a+1的值时需用到的数学方法是( )
A.待定系数法 B.配方 C.降次 D.消元
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.在平面直角坐标系中,智多星做走棋的游戏,其走法是:棋子从原点出发,第1步向上走1个单位,第2步向上走2个单位,第3步向右走1个单位,第4步向上走1个单位……依此类推,第n步的走法是:当n被3除,余数为2时,则向上走2个单位;当走完第2018步时,棋子所处位置的坐标是_____
14.如图,一根5m长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A(羊只能在草地上活动),那么小羊A在草地上的最大活动区域面积是_____平方米.
15.如图,正△的边长为,点、在半径为的圆上,点在圆内,将正绕点逆时针针旋转,当点第一次落在圆上时,旋转角的正切值为_______________
16.如图,矩形ABCD中,如果以AB为直径的⊙O沿着滚动一周,点恰好与点C重合,那么 的值等于________.(结果保留两位小数)
17.的相反数是_____,倒数是_____,绝对值是_____
18.若﹣4xay+x2yb=﹣3x2y,则a+b=_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)已知:如图,点A,F,C,D在同一直线上,AF=DC,AB∥DE,AB=DE,连接BC,BF,CE.求证:四边形BCEF是平行四边形.
20.(6分)如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.求证:四边形OCED是矩形;若CE=1,DE=2,ABCD的面积是 .
21.(6分)解分式方程:=1
22.(8分)某种蔬菜的销售单价y1与销售月份x之间的关系如图(1)所示,成本y2与销售月份之间的关系如图(2)所示(图(1)的图象是线段图(2)的图象是抛物线)
分别求出y1、y2的函数关系式(不写自变量取值范围);通过计算说明:哪个月出售这种蔬菜,每千克的收益最大?
23.(8分)如图,抛物线(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0).
(1)求抛物线的解析式;
(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;
(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标.
24.(10分)2018年平昌冬奥会在2月9日到25日在韩国平昌郡举行,为了调查中学生对冬奥会比赛项目的了解程度,某中学在学生中做了一次抽样调查,调查结果共分为四个等级:A、非常了解B、比较了解C、基本了解D、不了解.根据调查统计结果,绘制了如图所示的不完整的三种统计图表.
对冬奥会了解程度的统计表
对冬奥会的了解程度
百分比
A非常了解
10%
B比较了解
15%
C基本了解
35%
D不了解
n%
(1)n= ;
(2)扇形统计图中,D部分扇形所对应的圆心角是 ;
(3)请补全条形统计图;
(4)根据调查结果,学校准备开展冬奥会的知识竞赛,某班要从“非常了解”程度的小明和小刚中选一人参加,现设计了如下游戏来确定谁参赛,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4然后放到一个不透明的袋中,一个人先从袋中摸出一个球,另一人再从剩下的三个球中随机摸出一个球,若摸出的两个球上的数字和为偶数,则小明去,否则小刚去,请用画树状图或列表的方法说明这个游戏是否公平.
25.(10分)某种型号油电混合动力汽车,从A地到B地燃油行驶需纯燃油费用76元,从A地到B地用电行驶需纯用电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元.求每行驶1千米纯用电的费用;若要使从A地到B地油电混合行驶所需的油、电费用合计不超过39元,则至少需用电行驶多少千米?
26.(12分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A、B、C三点,已知点A(﹣3,0),B(0,3),C(1,0).
(1)求此抛物线的解析式.
(2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PD⊥AB于点D.动点P在什么位置时,△PDE的周长最大,求出此时P点的坐标.
27.(12分)(1)如图1,在矩形ABCD中,点O在边AB上,∠AOC=∠BOD,求证:AO=OB;
(2)如图2,AB是⊙O的直径,PA与⊙O相切于点A,OP与⊙O相交于点C,连接CB,∠OPA=40°,求∠ABC的度数.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
根据俯视图中每列正方形的个数,再画出从正面的,左面看得到的图形:
几何体的左视图是:
.
故选D.
2、D
【解析】
解:作AD⊥BC,并作出把Rt△ABC先绕B点顺时针旋转180°后所得△A1BC1,如图所示.∵AC=2,∠ABC=10°,∴BC=4,∴AB=2,∴AD===,∴BD===1.∵点B坐标为(1,0),∴A点的坐标为(4,).∵BD=1,∴BD1=1,∴D1坐标为(﹣2,0),∴A1坐标为(﹣2,﹣).∵再向下平移2个单位,∴A′的坐标为(﹣2,﹣﹣2).故选D.
点睛:本题主要考查了直角三角形的性质,勾股定理,旋转的性质和平移的性质,作出图形利用旋转的性质和平移的性质是解答此题的关键.
3、C
【解析】
分析:根据两直线平行,同位角相等可得 再根据三角形内角与外角的性质可得∠C的度数.
详解:∵AB∥CD,
∴
∵
∴
故选C.
点睛:考查平行线的性质和三角形外角的性质,三角形的一个外角等于与它不相邻的两个内角的和.
4、D
【解析】
先利用勾股定理计算出OP=1,然后根据点与圆的位置关系的判定方法得到r的范围.
【详解】
∵点P的坐标为(3,4),∴OP1.
∵点P(3,4)在⊙O内,∴OP<r,即r>1.
故选D.
【点睛】
本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.
5、D
【解析】
【分析】根据中位数和众数的定义进行求解即可得答案.
【详解】对这组数据重新排列顺序得,25,26,27,28,29,29,30,
处于最中间是数是28,
∴这组数据的中位数是28,
在这组数据中,29出现的次数最多,
∴这组数据的众数是29,
故选D.
【点睛】本题考查了中位数和众数的概念,熟练掌握众数和中位数的概念是解题的关键.一组数据中出现次数最多的数据叫做众数,一组数据按从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.
6、D
【解析】
分别利用极差以及中位数和众数以及平均数的求法分别分析得出答案.
解:由图表可得:14岁的有5人,故众数是14,故选项A正确,不合题意;
极差是:16﹣13=3,故选项B正确,不合题意;
中位数是:14.5,故选项C正确,不合题意;
平均数是:(13+14×5+15×4+16×2)÷12≈14.5,故选项D错误,符合题意.
故选D.
“点睛”此题主要考查了极差以及中位数和众数以及平均数的求法,正确把握相关定义是解题关键.
7、C
【解析】
分析:细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.
详解:从左边看竖直叠放2个正方形.
故选:C.
点睛:此题考查了几何体的三种视图和学生的空间想象能力,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.
8、B
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解:0.00007m,这个数据用科学记数法表示7×10﹣1.
故选:B.
【点睛】
本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
9、C
【解析】
根据两三角形三条边对应成比例,两三角形相似进行解答
【详解】
设小正方形的边长为1,则△ABC的各边分别为3、、,只能F是M或N时,其各边是6、2,2.与△ABC各边对应成比例,故选C
【点睛】
本题考查了相似三角形的判定,相似三角形对应边成比例是解题的关键
10、D
【解析】
本题主要考查二次函数的解析式
【详解】
解:根据二次函数的解析式形式可得,设顶点坐标为(h,k),则二次函数的解析式为.由原抛物线解析式可得a=1,且原抛物线的顶点坐标为(0,0),向右平移1个单位后的顶点坐标为(1,0),故平移后的解析式为.
故选D.
【点睛】
本题主要考查二次函数的顶点式,根据顶点的平移可得到二次函数平移后的解析式.
11、B
【解析】
根据题目的条件和图形可以判断点B分别以C和A为圆心CB和AB为半径旋转120°,并且所走过的两路径相等,求出一个乘以2即可得到.
【详解】
如图:
BC=AB=AC=1,
∠BCB′=120°,
∴B点从开始至结束所走过的路径长度为2×弧BB′=2×.故选B.
12、C
【解析】
根据一元二次方程的解的定义即可求出答案.
【详解】
由题意可知:a2-a-1=0,
∴a2-a=1,
或a2-1=a
∴a3-2a+1
=a3-a-a+1
=a(a2-1)-(a-1)
=a2-a+1
=1+1
=2
故选:C.
【点睛】
本题考查了一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、(672,2019)
【解析】分析:按照题目给定的规则,找到周期,由题意可得每三步是一个循环,所以只需要计算2018被3除,就可以得到棋子的位置.
详解:
解:由题意得,每3步为一个循环组依次循环,且一个循环组内向右1个单位,向上3个单位,
∵2018÷3=672…2,
∴走完第2018步,为第673个循环组的第2步,
所处位置的横坐标为672,
纵坐标为672×3+3=2019,
∴棋子所处位置的坐标是(672,2019).
故答案为:(672,2019).
点睛:周期问题解决问题的核心是要找到最小正周期,然后把给定的数(一般是一个很大的数)除以最小正周期,余数是几,就是第几步,特别余数是1,就是第一步,余数是0,就是最后一步.
14、
【解析】
试题分析:根据题意可知小羊的最大活动区域为:半径为5,圆心角度数为90°的扇形和半径为1,圆心角为60°的扇形,则.
点睛:本题主要考查的就是扇形的面积计算公式,属于简单题型.本题要特别注意的就是在拐角的位置时所构成的扇形的圆心角度数和半径,能够画出图形是解决这个问题的关键.在求扇形的面积时,我们一定要将圆心角代入进行计算,如果题目中出现的是圆周角,则我们需要求出圆心角的度数,然后再进行计算.
15、
【解析】
作辅助线,首先求出∠DAC的大小,进而求出旋转的角度,即可得出答案.
【详解】
如图,分别连接OA、OB、OD;
∵OA=OB= ,AB=2,
∴△OAB是等腰直角三角形,
∴∠OAB=45°;
同理可证:∠OAD=45°,
∴∠DAB=90°;
∵∠CAB=60°,
∴∠DAC=90°−60°=30°,
∴旋转角的正切值是,
故答案为:.
【点睛】
此题考查等边三角形的性质,旋转的性质,点与圆的位置关系,解直角三角形,解题关键在于作辅助线.
16、3.1
【解析】
分析:由题意可知:BC的长就是⊙O的周长,列式即可得出结论.
详解:∵以AB为直径的⊙O沿着滚动一周,点恰好与点C重合,∴BC的长就是⊙O的周长,∴π•AB=BC,∴=π≈3.1.
故答案为3.1.
点睛:本题考查了圆的周长以及线段的比.解题的关键是弄懂BC的长就是⊙O的周长.
17、 ,
【解析】
∵只有符号不同的两个数是互为相反数,
∴的相反数是;
∵乘积为1的两个数互为倒数,
∴的倒数是;
∵负数得绝对值是它的相反数,
∴绝对值是
故答案为(1). (2). (3).
18、1
【解析】
两个单项式合并成一个单项式,说明这两个单项式为同类项.
【详解】
解:由同类项的定义可知,
a=2,b=1,
∴a+b=1.
故答案为:1.
【点睛】
本题考查的知识点为:同类项中相同字母的指数是相同的.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、证明见解析
【解析】
首先证明△ABC≌△DEF(ASA),进而得出BC=EF,BC∥EF,进而得出答案.
【详解】
∵AB∥DE,
∴∠A=∠D,
∵AF=CD,
∴AC=DF,
在△ABC和△DEF中,
,
∴△ABC≌△DEF,
∴BC=EF,∠ACB=∠DFE,
∴BC∥EF,
∴四边形BCEF是平行四边形.
【点睛】
本题考查了全等三角形的判定与性质与平行四边形的判定,解题的关键是熟练的掌握全等三角形的判定与性质与平行四边形的判定.
20、(1)证明见解析;(2)1.
【解析】
【分析】(1)欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;
(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.
【详解】(1)∵四边形ABCD是菱形,
∴AC⊥BD,
∴∠COD=90°.
∵CE∥OD,DE∥OC,
∴四边形OCED是平行四边形,
又∠COD=90°,
∴平行四边形OCED是矩形;
(2)由(1)知,平行四边形OCED是矩形,则CE=OD=1,DE=OC=2.
∵四边形ABCD是菱形,
∴AC=2OC=1,BD=2OD=2,
∴菱形ABCD的面积为:AC•BD=×1×2=1,
故答案为1.
【点睛】本题考查了矩形的判定与性质,菱形的性质,熟练掌握矩形的判定及性质、菱形的性质是解题的关键.
21、x=1
【解析】
分式方程变形后去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【详解】
化为整式方程得:2﹣3x=x﹣2,
解得:x=1,
经检验x=1是原方程的解,
所以原方程的解是x=1.
【点睛】
此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为
整式方程求解.解分式方程一定注意要验根.
22、(1)y1=;y2=x2﹣4x+2;(2)5月出售每千克收益最大,最大为.
【解析】
(1)观察图象找出点的坐标,利用待定系数法即可求出y1和y2的解析式;
(2)由收益W=y1-y2列出W与x的函数关系式,利用配方求出二次函数的最大值.
【详解】
解:(1)设y1=kx+b,将(3,5)和(6,3)代入得,,解得.
∴y1=﹣x+1.
设y2=a(x﹣6)2+1,把(3,4)代入得,
4=a(3﹣6)2+1,解得a=.
∴y2=(x﹣6)2+1,即y2=x2﹣4x+2.
(2)收益W=y1﹣y2,
=﹣x+1﹣(x2﹣4x+2)
=﹣(x﹣5)2+,
∵a=﹣<0,
∴当x=5时,W最大值=.
故5月出售每千克收益最大,最大为元.
【点睛】
本题考查了一次函数和二次函数的应用,熟练掌握待定系数法求解析式是解题关键,掌握配方法是求二次函数最大值常用的方法
23、(1);(2)(,0);(3)1,M(2,﹣3).
【解析】
试题分析:方法一:
(1)该函数解析式只有一个待定系数,只需将B点坐标代入解析式中即可.
(2)首先根据抛物线的解析式确定A点坐标,然后通过证明△ABC是直角三角形来推导出直径AB和圆心的位置,由此确定圆心坐标.
(3)△MBC的面积可由S△MBC=BC×h表示,若要它的面积最大,需要使h取最大值,即点M到直线BC的距离最大,若设一条平行于BC的直线,那么当该直线与抛物线有且只有一个交点时,该交点就是点M.
方法二:
(1)该函数解析式只有一个待定系数,只需将B点坐标代入解析式中即可.
(2)通过求出A,B,C三点坐标,利用勾股定理或利用斜率垂直公式可求出AC⊥BC,从而求出圆心坐标.
(3)利用三角形面积公式,过M点作x轴垂线,水平底与铅垂高乘积的一半,得出△MBC的面积函数,从而求出M点.
试题解析:解:方法一:
(1)将B(1,0)代入抛物线的解析式中,得: 0=16a﹣×1﹣2,即:a=,∴抛物线的解析式为:.
(2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2);
∴OA=1,OC=2,OB=1,即:OC2=OA•OB,又:OC⊥AB,∴△OAC∽△OCB,得:∠OCA=∠OBC;
∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°,∴△ABC为直角三角形,AB为△ABC外接圆的直径;
所以该外接圆的圆心为AB的中点,且坐标为:(,0).
(3)已求得:B(1,0)、C(0,﹣2),可得直线BC的解析式为:y=x﹣2;
设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:
x+b=,即:,且△=0;
∴1﹣1×(﹣2﹣b)=0,即b=﹣1;
∴直线l:y=x﹣1.
所以点M即直线l和抛物线的唯一交点,有:,解得:
即 M(2,﹣3).
过M点作MN⊥x轴于N,S△BMC=S梯形OCMN+S△MNB﹣S△OCB=×2×(2+3)+×2×3﹣×2×1=1.
方法二:
(1)将B(1,0)代入抛物线的解析式中,得: 0=16a﹣×1﹣2,即:a=,∴抛物线的解析式为:.
(2)∵y=(x﹣1)(x+1),∴A(﹣1,0),B(1,0).C(0,﹣2),∴KAC= =﹣2,KBC= =,∴KAC×KBC=﹣1,∴AC⊥BC,∴△ABC是以AB为斜边的直角三角形,△ABC的外接圆的圆心是AB的中点,△ABC的外接圆的圆心坐标为(,0).
(3)过点M作x轴的垂线交BC′于H,∵B(1,0),C(0,﹣2),∴lBC:y=x﹣2,设H(t,t﹣2),M(t,),∴S△MBC=×(HY﹣MY)(BX﹣CX)=×(t﹣2﹣)(1﹣0)=﹣t2+1t,∴当t=2时,S有最大值1,∴M(2,﹣3).
点睛:考查了二次函数综合题,该题的难度不算太大,但用到的琐碎知识点较多,综合性很强.熟练掌握直角三角形的相关性质以及三角形的面积公式是理出思路的关键.
24、 (1)40;(2)144°;(3)作图见解析;(4)游戏规则不公平.
【解析】
(1)根据统计图可以求出这次调查的n的值;
(2)根据统计图可以求得扇形统计图中D部分扇形所对应的圆心角的度数;
(3)根据题意可以求得调查为D的人数,从而可以将条形统计图补充完整;
(4)根据题意可以写出树状图,从而可以解答本题.
【详解】
解:(1)n%=1﹣10%﹣15%﹣35%=40%,
故答案为40;
(2)扇形统计图中D部分扇形所对应的圆心角是:360°×40%=144°,
故答案为144°;
(3)调查的结果为D等级的人数为:400×40%=160,
故补全的条形统计图如右图所示,
(4)由题意可得,树状图如右图所示,
P(奇数)
P(偶数)
故游戏规则不公平.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
25、(1)每行驶1千米纯用电的费用为0.26元.(2)至少需用电行驶74千米.
【解析】
(1)根据某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元,可以列出相应的分式方程,然后解分式方程即可解答本题;
(2)根据(1)中用电每千米的费用和本问中的信息可以列出相应的不等式,解不等式即可解答本题.
【详解】
(1)设每行驶1千米纯用电的费用为x元,根据题意得:
=
解得:x=0.26
经检验,x=0.26是原分式方程的解,
答:每行驶1千米纯用电的费用为0.26元;
(2)从A地到B地油电混合行驶,用电行驶y千米,得:
0.26y+(﹣y)×(0.26+0.50)≤39
解得:y≥74,即至少用电行驶74千米.
26、(1)y=﹣x2﹣2x+1;(2)(﹣ ,)
【解析】
(1)将A(-1,0),B(0,1),C(1,0)三点的坐标代入y=ax2+bx+c,运用待定系数法即可求出此抛物线的解析式;
(2)先证明△AOB是等腰直角三角形,得出∠BAO=45°,再证明△PDE是等腰直角三角形,则PE越大,△PDE的周长越大,再运用待定系数法求出直线AB的解析式为y=x+1,则可设P点的坐标为(x,-x2-2x+1),E点的坐标为(x,x+1),那么PE=(-x2-2x+1)-(x+1)=-(x+)2+,根据二次函数的性质可知当x=-时,PE最大,△PDE的周长也最大.将x=-代入-x2-2x+1,进而得到P点的坐标.
【详解】
解:(1)∵抛物线y=ax2+bx+c经过点A(﹣1,0),B(0,1),C(1,0),
∴,
解得,
∴抛物线的解析式为y=﹣x2﹣2x+1;
(2)∵A(﹣1,0),B(0,1),
∴OA=OB=1,
∴△AOB是等腰直角三角形,
∴∠BAO=45°.
∵PF⊥x轴,
∴∠AEF=90°﹣45°=45°,
又∵PD⊥AB,
∴△PDE是等腰直角三角形,
∴PE越大,△PDE的周长越大.
设直线AB的解析式为y=kx+b,则
,解得,
即直线AB的解析式为y=x+1.
设P点的坐标为(x,﹣x2﹣2x+1),E点的坐标为(x,x+1),
则PE=(﹣x2﹣2x+1)﹣(x+1)=﹣x2﹣1x=﹣(x+)2+,
所以当x=﹣时,PE最大,△PDE的周长也最大.
当x=﹣时,﹣x2﹣2x+1=﹣(﹣)2﹣2×(﹣)+1=,
即点P坐标为(﹣,)时,△PDE的周长最大.
【点睛】
本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求二次函数、一次函数的解析式,等腰直角三角形的判定与性质,二次函数的性质,三角形的周长,综合性较强,难度适中.
27、(1)证明见解析;(2)25°.
【解析】
试题分析: (1)根据等量代换可求得∠AOD=∠BOC,根据矩形的对边相等,每个角都是直角,可知∠A=∠B=90°,AD=BC,根据三角形全等的判定AAS证得△AOD≌△BOC,从而得证结论.
(2)利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠POA的度数,然后利用圆周角定理来求∠ABC的度数.
试题解析:(1)∵∠AOC=∠BOD
∴∠AOC -∠COD=∠BOD-∠COD
即∠AOD=∠BOC
∵四边形ABCD是矩形
∴∠A=∠B=90°,AD=BC
∴
∴AO=OB
(2)解:∵AB是的直径,PA与相切于点A,
∴PA⊥AB,
∴∠A=90°.
又∵∠OPA=40°,
∴∠AOP=50°,
∵OB=OC,
∴∠B=∠OCB.
又∵∠AOP=∠B+∠OCB,
∴.
相关试卷
这是一份湖北省当阳市2021-2022学年中考数学五模试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,的倒数的绝对值是等内容,欢迎下载使用。
这是一份湖北省潜江市2021-2022学年中考数学最后一模试卷含解析,共21页。试卷主要包含了已知,下列计算正确的是等内容,欢迎下载使用。
这是一份湖北省麻城市2021-2022学年中考数学最后一模试卷含解析,共21页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。