2021-2022学年湖北省枣阳市阳光中学中考押题数学预测卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.-sin60°的倒数为( )
A.-2 B. C.- D.-
2.一次函数y=kx+k(k≠0)和反比例函数在同一直角坐标系中的图象大致是( )
A. B. C. D.
3.定义:一个自然数,右边的数字总比左边的数字小,我们称之为“下滑数”(如:32,641,8531等).现从两位数中任取一个,恰好是“下滑数”的概率为( )
A. B. C. D.
4.共享单车已经成为城市公共交通的重要组成部分,某共享单车公司经过调查获得关于共享单车租用行驶时间的数据,并由此制定了新的收费标准:每次租用单车行驶a小时及以内,免费骑行;超过a小时后,每半小时收费1元,这样可保证不少于50%的骑行是免费的.制定这一标准中的a的值时,参考的统计量是此次调查所得数据的( )
A.平均数 B.中位数 C.众数 D.方差
5.﹣的绝对值是( )
A.﹣ B. C.﹣2 D.2
6.设0<k<2,关于x的一次函数y=(k-2)x+2,当1≤x≤2时,y的最小值是( )
A.2k-2 B.k-1 C.k D.k+1
7.-10-4的结果是( )
A.-7 B.7 C.-14 D.13
8.下列命题中,正确的是( )
A.菱形的对角线相等
B.平行四边形既是轴对称图形,又是中心对称图形
C.正方形的对角线不能相等
D.正方形的对角线相等且互相垂直
9.把图中的五角星图案,绕着它的中心点O进行旋转,若旋转后与自身重合,则至少旋转( )
A.36° B.45° C.72° D.90°
10.如图,平面直角坐标系xOy中,矩形OABC的边OA、OC分别落在x、y轴上,点B坐标为(6,4),反比例函数的图象与AB边交于点D,与BC边交于点E,连结DE,将△BDE沿DE翻折至△B'DE处,点B'恰好落在正比例函数y=kx图象上,则k的值是( )
A. B. C. D.
11.已知点A、B、C是直径为6cm的⊙O上的点,且AB=3cm,AC=3 cm,则∠BAC的度数为( )
A.15° B.75°或15° C.105°或15° D.75°或105°
12.如图,直线l1∥l2,以直线l1上的点A为圆心、适当长为半径画弧,分别交直线l1、l2于点B、C,连接AC、BC.若∠ABC=67°,则∠1=( )
A.23° B.46° C.67° D.78°
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.若不等式组有解,则m的取值范围是______.
14.已知线段c是线段a和b的比例中项,且a、b的长度分别为2cm和8cm,则c的长度为_____cm.
15.如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为______.
16.方程=1的解是___.
17.在3×3方格上做填字游戏,要求每行每列及对角线上三个方格中的数字和都相等,若填在图中的数字如图所示,则x+y的值是_____.
2x
3
2
y
﹣3
4y
18.如图,正方形ABCD中,AB=2,将线段CD绕点C顺时针旋转90°得到线段CE,线段BD绕点B顺时针旋转90°得到线段BF,连接BF,则图中阴影部分的面积是_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,△ABC中,AB=AC=4,D、E分别为AB、AC的中点,连接CD,过E作EF∥DC交BC的延长线于F;
(1)求证:DE=CF;
(2)若∠B=60°,求EF的长.
20.(6分)如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°.求∠DAC的度数.
21.(6分)解方程:=1.
22.(8分)为更精准地关爱留守学生,某学校将留守学生的各种情形分成四种类型:A.由父母一方照看;B.由爷爷奶奶照看;C.由叔姨等近亲照看;D.直接寄宿学校.某数学小组随机调查了一个班级,发现该班留守学生数量占全班总人数的20%,并将调查结果制成如下两幅不完整的统计图.
该班共有 名留守学生,B类型留守学生所在扇形的圆心角的度数为 ;将条形统计图补充完整;已知该校共有2400名学生,现学校打算对D类型的留守学生进行手拉手关爱活动,请你估计该校将有多少名留守学生在此关爱活动中受益?
23.(8分)如图,在△ABC中,∠C = 90°,E是BC上一点,ED⊥AB,垂足为D.
求证:△ABC∽△EBD.
24.(10分)工人小王生产甲、乙两种产品,生产产品件数与所用时间之间的关系如表:
生产甲产品件数(件)
生产乙产品件数(件)
所用总时间(分钟)
10
10
350
30
20
850
(1)小王每生产一件甲种产品和每生产一件乙种产品分别需要多少分钟?
(2)小王每天工作8个小时,每月工作25天.如果小王四月份生产甲种产品a件(a为正整数).
①用含a的代数式表示小王四月份生产乙种产品的件数;
②已知每生产一件甲产品可得1.50元,每生产一件乙种产品可得2.80元,若小王四月份的工资不少于1500元,求a的取值范围.
25.(10分)Rt△ABC中,∠ABC=90°,以AB为直径作⊙O交AC边于点D,E是边BC的中点,连接DE,OD.
(1)如图①,求∠ODE的大小;
(2)如图②,连接OC交DE于点F,若OF=CF,求∠A的大小.
26.(12分)计算:4cos30°+|3﹣|﹣()﹣1+(π﹣2018)0
27.(12分)(1)计算:()﹣3×[﹣()3]﹣4cos30°+;
(2)解方程:x(x﹣4)=2x﹣8
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
分析:根据乘积为1的两个数互为倒数,求出它的倒数即可.
详解:
的倒数是.
故选D.
点睛:考查特殊角的三角函数和倒数的定义,熟记特殊角的三角函数值是解题的关键.
2、C
【解析】
A、由反比例函数的图象在一、三象限可知k>0,由一次函数的图象过二、四象限可知k<0,两结论相矛盾,故选项错误; B、由反比例函数的图象在二、四象限可知k<0,由一次函数的图象与y轴交点在y轴的正半轴可知k>0,两结论相矛盾,故选项错误;C、由反比例函数的图象在二、四象限可知k<0,由一次函数的图象过二、三、四象限可知k<0,两结论一致,故选项正确;D、由反比例函数的图象在一、三象限可知k>0,由一次函数的图象与y轴交点在y轴的负半轴可知k<0,两结论相矛盾,故选项错误,
故选C.
3、A
【解析】
分析:根据概率的求法,找准两点:①全部情况的总数:根据题意得知这样的两位数共有90个;
②符合条件的情况数目:从总数中找出符合条件的数共有45个;二者的比值就是其发生的概率.
详解:两位数共有90个,下滑数有10、21、20、32、31、30、43、42、41、40、54、53、52、51、50、65、64、63、62、61、60、76、75、74、73、72、71、70、87、86、85、84、83、82、81、80、98、97、96、95、94、93、92、91、90共有45个,
概率为.
故选A.
点睛:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
4、B
【解析】
根据需要保证不少于50%的骑行是免费的,可得此次调查的参考统计量是此次调查所得数据的中位数.
【详解】
因为需要保证不少于50%的骑行是免费的,
所以制定这一标准中的a的值时,参考的统计量是此次调查所得数据的中位数,
故选B.
【点睛】
本题考查了中位数的知识,中位数是以它在所有标志值中所处的位置确定的全体单位标志值的代表值,不受分布数列的极大或极小值影响,从而在一定程度上提高了中位数对分布数列的代表性。
5、B
【解析】
根据求绝对值的法则,直接计算即可解答.
【详解】
,
故选:B.
【点睛】
本题主要考查求绝对值的法则,掌握负数的绝对值等于它的相反数,是解题的关键.
6、A
【解析】
先根据0<k<1判断出k-1的符号,进而判断出函数的增减性,根据1≤x≤1即可得出结论.
【详解】
∵0<k<1,
∴k-1<0,
∴此函数是减函数,
∵1≤x≤1,
∴当x=1时,y最小=1(k-1)+1=1k-1.
故选A.
【点睛】
本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0)中,当k<0,b>0时函数图象经过一、二、四象限是解答此题的关键.
7、C
【解析】
解:-10-4=-1.故选C.
8、D
【解析】
根据菱形,平行四边形,正方形的性质定理判断即可.
【详解】
A.菱形的对角线不一定相等, A 错误;
B.平行四边形不是轴对称图形,是中心对称图形,B 错误;
C. 正方形的对角线相等,C错误;
D.正方形的对角线相等且互相垂直,D 正确; 故选:D.
【点睛】
本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
9、C
【解析】
分析:五角星能被从中心发出的射线平分成相等的5部分,再由一个周角是360°即可求出最小的旋转角度.
详解:五角星可以被中心发出的射线平分成5部分,那么最小的旋转角度为:360°÷5=72°.
故选C.
点睛:本题考查了旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.
10、B
【解析】
根据矩形的性质得到,CB∥x轴,AB∥y轴,于是得到D、E坐标,根据勾股定理得到ED,连接BB′,交ED于F,过B′作B′G⊥BC于G,根据轴对称的性质得到BF=B′F,BB′⊥ED求得BB′,设EG=x,根据勾股定理即可得到结论.
【详解】
解:∵矩形OABC,
∴CB∥x轴,AB∥y轴.
∵点B坐标为(6,1),
∴D的横坐标为6,E的纵坐标为1.
∵D,E在反比例函数的图象上,
∴D(6,1),E(,1),
∴BE=6﹣=,BD=1﹣1=3,
∴ED==.连接BB′,交ED于F,过B′作B′G⊥BC于G.
∵B,B′关于ED对称,
∴BF=B′F,BB′⊥ED,
∴BF•ED=BE•BD,即BF=3×,
∴BF=,
∴BB′=.
设EG=x,则BG=﹣x.
∵BB′2﹣BG2=B′G2=EB′2﹣GE2,
∴,
∴x=,
∴EG=,
∴CG=,
∴B′G=,
∴B′(,﹣),
∴k=.
故选B.
【点睛】
本题考查了翻折变换(折叠问题),矩形的性质,勾股定理,熟练掌握折叠的性质是解题的关键.
11、C
【解析】
解:如图1.∵AD为直径,∴∠ABD=∠ACD=90°.在Rt△ABD中,AD=6,AB=3,则∠BDA=30°,∠BAD=60°.在Rt△ABD中,AD=6,AC=3,∠CAD=45°,则∠BAC=105°;
如图2,.∵AD为直径,∴∠ABD=∠ABC=90°.在Rt△ABD中,AD=6,AB=3,则∠BDA=30°,∠BAD=60°.在Rt△ABC中,AD=6,AC=3,∠CAD=45°,则∠BAC=15°.故选C.
点睛:本题考查的是圆周角定理和锐角三角函数的知识,掌握直径所对的圆周角是直径和熟记特殊角的三角函数值是解题的关键,注意分情况讨论思想的运用.
12、B
【解析】
根据圆的半径相等可知AB=AC,由等边对等角求出∠ACB,再由平行得内错角相等,最后由平角180°可求出∠1.
【详解】
根据题意得:AB=AC,
∴∠ACB=∠ABC=67°,
∵直线l1∥l2,
∴∠2=∠ABC=67°,
∵∠1+∠ACB+∠2=180°,
∴∠ACB=180°-∠1-∠ACB=180°-67°-67°=46º.
故选B.
【点睛】
本题考查等腰三角形的性质,平行线的性质,熟练根据这些性质得到角之间的关系是关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
分析:解出不等式组的解集,然后根据解集的取值范围来确定m的取值范围.
解答:解:由1-x≤2得x≥-1又∵x>m
根据同大取大的原则可知:
若不等式组的解集为x≥-1时,则m≤-1
若不等式组的解集为x≥m时,则m≥-1.
故填m≤-1或m≥-1.
点评:本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集再利用不等式组的解集的确定原则来确定未知数的取值范围.
14、1
【解析】
根据比例中项的定义,列出比例式即可得出中项,注意线段长度不能为负.
【详解】
根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积.
所以c2=2×8,
解得c=±1(线段是正数,负值舍去),
故答案为1.
【点睛】
此题考查了比例线段.理解比例中项的概念,这里注意线段长度不能是负数.
15、1
【解析】
根据垂径定理求得BD,然后根据勾股定理求得即可.
【详解】
解:∵OD⊥BC,
∴BD=CD=BC=3,
∵OB=AB=5,
∴在Rt△OBD中,OD==1.
故答案为1.
【点睛】
本题考查垂径定理及其勾股定理,熟记定理并灵活应用是本题的解题关键.
16、x=﹣4
【解析】
分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【详解】
去分母得:3+2x=x﹣1,
解得:x=﹣4,
经检验x=﹣4是分式方程的解.
【点睛】
此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
17、0
【解析】
根据题意列出方程组,求出方程组的解即可得到结果.
【详解】
解:根据题意得:,即,
解得:,
则x+y=﹣1+1=0,
故答案为0
【点睛】
此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.
18、6﹣π
【解析】
过F作FM⊥BE于M,则∠FME=∠FMB=90°,
∵四边形ABCD是正方形,AB=2,
∴∠DCB=90°,DC=BC=AB=2,∠DCB=45°,
由勾股定理得:BD=2,
∵将线段CD绕点C顺时针旋转90°得到线段CE,线段BD绕点B顺时针旋转90°得到线段BF,
∴∠DCE=90°,BF=BD=2,∠FBE=90°-45°=45°,
∴BM=FM=2,ME=2,
∴阴影部分的面积=×2×2+×4×2+-=6-π.
故答案为:6-π.
点睛:本题考查了旋转的性质,解直角三角形,正方形的性质,扇形的面积计算等知识点,能求出各个部分的面积是解此题的关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、证明见解析;.
【解析】
根据两组对边分别平行的四边形是平行四边形即可证明;
只要求出CD即可解决问题.
【详解】
证明:、E分别是AB、AC的中点
,
又
四边形CDEF为平行四边形
.
,
,
又为AB中点
,
在中,
,
,
四边形CDEF是平行四边形,
.
【点睛】
本题考查平行四边形的判定和性质、勾股定理、三角形的中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
20、∠DAC=20°.
【解析】
根据角平分线的定义可得∠ABC=2∠ABE,再根据直角三角形两锐角互余求出∠BAD,然后根据∠DAC=∠BAC﹣∠BAD计算即可得解.
【详解】
∵BE平分∠ABC,∴∠ABC=2∠ABE=2×25°=50°.
∵AD是BC边上的高,∴∠BAD=90°﹣∠ABC=90°﹣50°=40°,∴∠DAC=∠BAC﹣∠BAD=60°﹣40°=20°.
【点睛】
本题考查了三角形的内角和定理,角平分线的定义,准确识图理清图中各角度之间的关系是解题的关键.
21、
【解析】
先把分式方程化为整式方程,解整式方程求得x的值,检验即可得分式方程的解.
【详解】
原方程变形为,
方程两边同乘以(2x﹣1),得2x﹣5=1(2x﹣1),
解得 .
检验:把代入(2x﹣1),(2x﹣1)≠0,
∴是原方程的解,
∴原方程的.
【点睛】
本题考查了分式方程的解法,把分式方程化为整式方程是解决问题的关键,解分式方程时,要注意验根.
22、(1)10,144;(2)详见解析;(3)96
【解析】
(1)依据C类型的人数以及百分比,即可得到该班留守的学生数量,依据B类型留守学生所占的百分比,即可得到其所在扇形的圆心角的度数;
(2)依据D类型留守学生的数量,即可将条形统计图补充完整;
(3)依据D类型的留守学生所占的百分比,即可估计该校将有多少名留守学生在此关爱活动中受益.
【详解】
解:(1)2÷20%=10(人),
×100%×360°=144°,
故答案为10,144;
(2)10﹣2﹣4﹣2=2(人),
如图所示:
(3)2400××20%=96(人),
答:估计该校将有96名留守学生在此关爱活动中受益.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
23、证明见解析
【解析】
试题分析:先根据垂直的定义得出∠EDB=90°,故可得出∠EDB=∠C.再由∠B=∠B,根据有两个角相等的两三角形相似即可得出结论.
试题解析:
解:∵ED⊥AB,
∴∠EDB=90°.
∵∠C=90°,
∴∠EDB=∠C.
∵∠B=∠B,
∴∽.
点睛:本题考查的是相似三角形的判定,熟知有两组角对应相等的两个三角形相似是解答此题的关键.
24、(1)小王每生产一件甲种产品和每生产一件乙种产品分别需要15分钟、20分钟;(2)①600-;② a≤1.
【解析】
(1)设生产一件甲种产品和每生产一件乙种产品分别需要x分钟、y分钟,根据图示可得:生产10件甲产品,10件乙产品用时350分钟,生产30件甲产品,20件乙产品,用时850分钟,列方程组求解;
(2)①根据生产一件甲种产品和每生产一件乙种产品分别需要的时间关系即可表示出结果;
②根据“小王四月份的工资不少于1500元”即可列出不等式.
【详解】
(1)设生产一件甲种产品需x分钟,生产一件乙种产品需y分钟,由题意得:
,
解这个方程组得:,
答:小王每生产一件甲种产品和每生产一件乙种产品分别需要15分钟、20分钟;
(2)①∵生产一件甲种产品需15分钟,生产一件乙种产品需20分钟,
∴一小时生产甲产品4件,生产乙产品3件,
所以小王四月份生产乙种产品的件数:3(25×8﹣)=600-;
②依题意:1.5a+2.8(600-)≥1500,
1680﹣0.6a≥1500,
解得:a≤1.
【点睛】
本题考查了二元一次方程组的应用、一元一次不等式的应用,正确理解题意,找准题中的等量关系列出方程组、不等关系列出不等式是解题的关键.
25、(1)∠ODE=90°;(2)∠A=45°.
【解析】
分析:(Ⅰ)连接OE,BD,利用全等三角形的判定和性质解答即可;
(Ⅱ)利用中位线的判定和定理解答即可.
详解:(Ⅰ)连接OE,BD.
∵AB是⊙O的直径,∴∠ADB=90°,∴∠CDB=90°.
∵E点是BC的中点,∴DE=BC=BE.
∵OD=OB,OE=OE,∴△ODE≌△OBE,∴∠ODE=∠OBE.
∵∠ABC=90°,∴∠ODE=90°;
(Ⅱ)∵CF=OF,CE=EB,∴FE是△COB的中位线,∴FE∥OB,∴∠AOD=∠ODE,由(Ⅰ)得∠ODE=90°,∴∠AOD=90°.
∵OA=OD,∴∠A=∠ADO=.
点睛:本题考查了圆周角定理,关键是根据学生对全等三角形的判定方法及切线的判定等知识的掌握情况解答.
26、1
【解析】
直接利用特殊角的三角函数值和负指数幂的性质、零指数幂的性质、二次根式的性质分别化简得出答案.
【详解】
原式=1×+2﹣3﹣2+1
=2+2﹣1
=1﹣1.
【点睛】
此题主要考查了实数运算,正确化简各数是解题关键.
27、(1)3;(1)x1=4,x1=1.
【解析】
(1)根据有理数的混合运算法则计算即可;
(1)先移项,再提取公因式求解即可.
【详解】
解:(1)原式=8×(﹣)﹣4×+1
=8×﹣1+1
=3;
(1)移项得:x(x﹣4)﹣1(x﹣4)=0,
(x﹣4)(x﹣1)=0,
x﹣4=0,x﹣1=0,
x1=4,x1=1.
【点睛】
本题考查了有理数的混合运算与解一元二次方程,解题的关键是熟练的掌握有理数的混合运算法则与根据因式分解法解一元二次方程.
湖北省黄冈市浠水县巴河中学2021-2022学年中考押题数学预测卷含解析: 这是一份湖北省黄冈市浠水县巴河中学2021-2022学年中考押题数学预测卷含解析,共19页。试卷主要包含了在平面直角坐标系中,已知点A,方程x2﹣3x+2=0的解是等内容,欢迎下载使用。
湖北省武汉第二初级中学2021-2022学年中考押题数学预测卷含解析: 这是一份湖北省武汉第二初级中学2021-2022学年中考押题数学预测卷含解析,共18页。
2022届湖北省枣阳市阳光中学中考数学最后冲刺浓缩精华卷含解析: 这是一份2022届湖北省枣阳市阳光中学中考数学最后冲刺浓缩精华卷含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号,- 的绝对值是等内容,欢迎下载使用。