2021-2022学年湖北省随州市广水市西北协作区重点中学中考猜题数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(共10小题,每小题3分,共30分)
1.当x=1时,代数式x3+x+m的值是7,则当x=﹣1时,这个代数式的值是( )
A.7 B.3 C.1 D.﹣7
2.某个密码锁的密码由三个数字组成,每个数字都是0-9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同,才能将锁打开,如果仅忘记了所设密码的最后那个数字,那么一次就能打开该密码的概率是( )
A. B. C. D.
3.如图,矩形ABCD中,AB=10,BC=5,点E,F,G,H分别在矩形ABCD各边上,且AE=CG,BF=DH,则四边形EFGH周长的最小值为( )
A.5 B.10 C.10 D.15
4.2017年扬中地区生产总值约为546亿元,将546亿用科学记数法表示为( )
A.5.46×108 B.5.46×109 C.5.46×1010 D.5.46×1011
5.下列运算正确的是( )
A.a2•a3=a6 B.a3+a2=a5 C.(a2)4=a8 D.a3﹣a2=a
6.在Rt△ABC中,∠C=90°,AC=5,AB=13,则sinA的值为( )
A. B. C. D.
7.下列图形中,既是中心对称图形,又是轴对称图形的是( )
A. B. C. D.
8.关于x的不等式x-b>0恰有两个负整数解,则b的取值范围是
A. B. C. D.
9.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为( )
A.144(1﹣x)2=100 B.100(1﹣x)2=144 C.144(1+x)2=100 D.100(1+x)2=144
10.将一把直尺与一块三角板如图所示放置,若则∠2的度数为( )
A.50° B.110° C.130° D.150°
二、填空题(本大题共6个小题,每小题3分,共18分)
11.某排水管的截面如图,已知截面圆半径OB=10cm,水面宽AB是16cm,则截面水深CD为_____.
12.当a<0,b>0时.化简:=_____.
13.如图,直线,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…,按照此做法进行下去,点A8的坐标为__________.
14.如图,正方形ABCD的边长为4,点M在边DC上,M、N 两点关于对角线AC对称,若DM=1,则tan∠ADN= .
15.=__________
16.如图,在矩形ABCD中,过点A的圆O交边AB于点E,交边AD于点F,已知AD=5,AE=2,AF=1.如果以点D为圆心,r为半径的圆D与圆O有两个公共点,那么r的取值范围是______.
三、解答题(共8题,共72分)
17.(8分)如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点.
(1)求证:△ABE∽△ECM;
(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由;
(3)当线段AM最短时,求重叠部分的面积.
18.(8分)已知开口向下的抛物线y=ax2-2ax+2与y轴的交点为A,顶点为B,对称轴与x轴的交点为C,点A与点D关于对称轴对称,直线BD与x轴交于点M,直线AB与直线OD交于点N.
(1)求点D的坐标.
(2)求点M的坐标(用含a的代数式表示).
(3)当点N在第一象限,且∠OMB=∠ONA时,求a的值.
19.(8分)先化简,再在1,2,3中选取一个适当的数代入求值.
20.(8分)如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE⊥BC于点E.试判断DE与⊙O的位置关系,并说明理由;过点D作DF⊥AB于点F,若BE=3,DF=3,求图中阴影部分的面积.
21.(8分)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数y=(x>0)的图象经过AO的中点C,交AB于点D,且AD=1.设点A的坐标为(4,4)则点C的坐标为 ;若点D的坐标为(4,n).
①求反比例函数y=的表达式;
②求经过C,D两点的直线所对应的函数解析式;在(2)的条件下,设点E是线段CD上的动点(不与点C,D重合),过点E且平行y轴的直线l与反比例函数的图象交于点F,求△OEF面积的最大值.
22.(10分)解方程:.
23.(12分)菏泽市牡丹区中学生运动会即将举行,各个学校都在积极地做准备,某校为奖励在运动会上取得好成绩的学生,计划购买甲、乙两种奖品共100件,已知甲种奖品的单价是30元,乙种奖品的单价是20元.
(1)若购买这批奖品共用2800元,求甲、乙两种奖品各购买了多少件?
(2)若购买这批奖品的总费用不超过2900元,则最多购买甲种奖品多少件?
24.如图,BD为△ABC外接圆⊙O的直径,且∠BAE=∠C.求证:AE与⊙O相切于点A;若AE∥BC,BC=2,AC=2,求AD的长.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
因为当x=1时,代数式的值是7,所以1+1+m=7,所以m=5,当x=-1时,=-1-1+5=3,
故选B.
2、A
【解析】
试题分析:根据题意可知总共有10种等可能的结果,一次就能打开该密码的结果只有1种,所以P(一次就能打该密码)=,故答案选A.
考点:概率.
3、B
【解析】
作点E关于BC的对称点E′,连接E′G交BC于点F,此时四边形EFGH周长取最小值,过点G作GG′⊥AB于点G′,如图所示,
∵AE=CG,BE=BE′,
∴E′G′=AB=10,
∵GG′=AD=5,
∴E′G=,
∴C四边形EFGH=2E′G=10,
故选B.
【点睛】本题考查了轴对称-最短路径问题,矩形的性质等,根据题意正确添加辅助线是解题的关键.
4、C
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.
【详解】
解:将546亿用科学记数法表示为:5.46×1010 ,故本题选C.
【点睛】
本题考查的是科学计数法,熟练掌握它的定义是解题的关键.
5、C
【解析】
根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;幂的乘方法则:底数不变,指数相乘进行计算即可.
【详解】
A、a2•a3=a5,故原题计算错误;
B、a3和a2不是同类项,不能合并,故原题计算错误;
C、(a2)4=a8,故原题计算正确;
D、a3和a2不是同类项,不能合并,故原题计算错误;
故选:C.
【点睛】
此题主要考查了幂的乘方、同底数幂的乘法,以及合并同类项,关键是掌握计算法则.
6、C
【解析】
先根据勾股定理求出BC得长,再根据锐角三角函数正弦的定义解答即可.
【详解】
如图,根据勾股定理得,BC==12,
∴sinA=.
故选C.
【点睛】
本题考查了锐角三角函数的定义及勾股定理,熟知锐角三角函数正弦的定义是解决问题的关键.
7、C
【解析】
根据中心对称图形和轴对称图形对各选项分析判断即可得解.
【详解】
A、不是轴对称图形,是中心对称图形,故本选项错误;
B、不是中心对称图形,是轴对称图形,故本选项错误;
C、既是中心对称图形,又是轴对称图形,故本选项正确;
D、是轴对称图形,不是中心对称图形,故本选项错误.
故选C.
【点睛】
本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
8、A
【解析】
根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可.
【详解】
根据x的不等式x-b>0恰有两个负整数解,可得x的负整数解为-1和-2
综合上述可得
故选A.
【点睛】
本题主要考查不等式的非整数解,关键在于非整数解的确定.
9、D
【解析】
试题分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可.
解:2012年的产量为100(1+x),
2013年的产量为100(1+x)(1+x)=100(1+x)2,
即所列的方程为100(1+x)2=144,
故选D.
点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键.
10、C
【解析】
如图,根据长方形的性质得出EF∥GH,推出∠FCD=∠2,代入∠FCD=∠1+∠A求出即可.
【详解】
∵EF∥GH,∴∠FCD=∠2,
∵∠FCD=∠1+∠A,∠1=40°,∠A=90°,
∴∠2=∠FCD=130°,
故选C.
【点睛】
本题考查了平行线的性质,三角形外角的性质等,准确识图是解题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、4cm.
【解析】
由题意知OD⊥AB,交AB于点C,由垂径定理可得出BC的长,在Rt△OBC中,根据勾股定理求出OC的长,由CD=OD-OC即可得出结论.
【详解】
由题意知OD⊥AB,交AB于点E,
∵AB=16cm,
∴BC=AB=×16=8cm,
在Rt△OBE中,
∵OB=10cm,BC=8cm,
∴OC=(cm),
∴CD=OD-OC=10-6=4(cm)
故答案为4cm.
【点睛】
本题考查的是垂径定理的应用,根据题意在直角三角形运用勾股定理列出方程是解答此题的关键.
12、
【解析】
分析:按照二次根式的相关运算法则和性质进行计算即可.
详解:
∵,
∴.
故答案为:.
点睛:熟记二次根式的以下性质是解答本题的关键:(1);(2)=.
13、(128,0)
【解析】
∵点A1坐标为(1,0),且B1A1⊥x轴,∴B1的横坐标为1,将其横坐标代入直线解析式就可以求出B1的坐标,就可以求出A1B1的值,OA1的值,根据锐角三角函数值就可以求出∠xOB3的度数,从而求出OB1的值,就可以求出OA2值,同理可以求出OB2、OB3…,从而寻找出点A2、A3…的坐标规律,最后求出A8的坐标.
【详解】
点坐标为(1,0),
轴
点的横坐标为1,且点在直线上
在中由勾股定理,得
,
在中,
.
.
.
.
故答案为 .
【点睛】
本题是一道一次函数的综合试题,也是一道规律试题,考查了直角三角形的性质,特别是所对的直角边等于斜边的一半的运用,点的坐标与函数图象的关系.
14、
【解析】
M、N两点关于对角线AC对称,所以CM=CN,进而求出CN的长度.再利用∠ADN=∠DNC即可求得tan∠ADN.
【详解】
解:在正方形ABCD中,BC=CD=1.
∵DM=1,
∴CM=2,
∵M、N两点关于对角线AC对称,
∴CN=CM=2.
∵AD∥BC,
∴∠ADN=∠DNC,
故答案为
【点睛】
本题综合考查了正方形的性质,轴对称的性质以及锐角三角函数的定义.
15、2;
【解析】
试题解析:先求-2的平方4,再求它的算术平方根,即:.
16、
【解析】
因为以点D为圆心,r为半径的圆D与圆O有两个公共点,则圆D与圆O相交,圆心距满足关系式:|R-r|
连接OA、OD,过O点作ON⊥AE,OM⊥AF.
AN=AE=1,AM=AF=2,MD=AD-AM=3
∵四边形ABCD是矩形
∴∠BAD=∠ANO=∠AMO=90°,
∴四边形OMAN是矩形
∴OM=AN=1
∴OA=,OD=
∵以点D为圆心,r为半径的圆D与圆O有两个公共点,则圆D与圆O相交
∴
【点睛】
本题考查了圆与圆相交的条件,熟记圆与圆相交时圆的半径与圆心距的关系是关键.
三、解答题(共8题,共72分)
17、(1)证明见解析;(2)能;BE=1或;(3)
【解析】
(1)证明:∵AB=AC,
∴∠B=∠C,
∵△ABC≌△DEF,
∴∠AEF=∠B,
又∵∠AEF+∠CEM=∠AEC=∠B+∠BAE,
∴∠CEM=∠BAE,
∴△ABE∽△ECM;
(2)能.
∵∠AEF=∠B=∠C,且∠AME>∠C,
∴∠AME>∠AEF,
∴AE≠AM;
当AE=EM时,则△ABE≌△ECM,
∴CE=AB=5,
∴BE=BC−EC=6−5=1,
当AM=EM时,则∠MAE=∠MEA,
∴∠MAE+∠BAE=∠MEA+∠CEM,即∠CAB=∠CEA,
又∵∠C=∠C,
∴△CAE∽△CBA,
∴,
∴CE=,
∴BE=6−=;
∴BE=1或;
(3)解:设BE=x,
又∵△ABE∽△ECM,
∴,即:,
∴CM=,
∴AM=5−CM,
∴当x=3时,AM最短为,
又∵当BE=x=3=BC时,
∴点E为BC的中点,
∴AE⊥BC,
∴AE=,
此时,EF⊥AC,
∴EM=,
S△AEM=.
18、(1)D(2,2);(2);(3)
【解析】
(1)令x=0求出A的坐标,根据顶点坐标公式或配方法求出顶点B的坐标、对称轴直线,根据点A与点D关于对称轴对称,确定D点坐标.
(2)根据点B、D的坐标用待定系数法求出直线BD的解析式,令y=0,即可求得M点的坐标.
(3)根据点A、B的坐标用待定系数法求出直线AB的解析式,求直线OD的解析式,进而求出交点N的坐标,得到ON的长.过A点作AE⊥OD,可证△AOE为等腰直角三角形,根据OA=2,可求得AE、OE的长,表示出EN的长.根据tan∠OMB=tan∠ONA,得到比例式,代入数值即可求得a的值.
【详解】
(1)当x=0时,,
∴A点的坐标为(0,2)
∵
∴顶点B的坐标为:(1,2-a),对称轴为x= 1,
∵点A与点D关于对称轴对称
∴D点的坐标为:(2,2)
(2)设直线BD的解析式为:y=kx+b
把B(1,2-a)D(2,2)代入得:
,解得:
∴直线BD的解析式为:y=ax+2-2a
当y=0时,ax+2-2a=0,解得:x=
∴M点的坐标为:
(3)由D(2,2)可得:直线OD解析式为:y=x
设直线AB的解析式为y=mx+n,代入A(0,2)B(1,2-a)可得:
解得:
∴直线AB的解析式为y= -ax+2
联立成方程组: ,解得:
∴N点的坐标为:()
ON=()
过A点作AE⊥OD于E点,则△AOE为等腰直角三角形.
∵OA=2
∴OE=AE=,EN=ON-OE=()-=)
∵M,C(1,0), B(1,2-a)
∴MC=,BE=2-a
∵∠OMB=∠ONA
∴tan∠OMB=tan∠ONA
∴,即
解得:a=或
∵抛物线开口向下,故a<0,
∴ a=舍去,
【点睛】
本题是一道二次函数与一次函数及三角函数综合题,掌握并灵活应用二次函数与一次函数的图象与性质,以及构建直角三角形借助点的坐标使用相等角的三角函数是解题的关键.
19、,当x=2时,原式=.
【解析】
试题分析: 先括号内通分,然后计算除法,最后取值时注意使得分式有意义,最后代入化简即可.
试题解析:
原式===
当x=2时,原式=.
20、(1)DE与⊙O相切,理由见解析;(2)阴影部分的面积为2π﹣.
【解析】
(1)直接利用角平分线的定义结合平行线的判定与性质得出∠DEB=∠EDO=90°,进而得出答案;
(2)利用勾股定理结合扇形面积求法分别分析得出答案.
【详解】
(1)DE与⊙O相切,
理由:连接DO,
∵DO=BO,
∴∠ODB=∠OBD,
∵∠ABC的平分线交⊙O于点D,
∴∠EBD=∠DBO,
∴∠EBD=∠BDO,
∴DO∥BE,
∵DE⊥BC,
∴∠DEB=∠EDO=90°,
∴DE与⊙O相切;
(2)∵∠ABC的平分线交⊙O于点D,DE⊥BE,DF⊥AB,
∴DE=DF=3,
∵BE=3,
∴BD==6,
∵sin∠DBF=,
∴∠DBA=30°,
∴∠DOF=60°,
∴sin60°=,
∴DO=2,
则FO=,
故图中阴影部分的面积为:.
【点睛】
此题主要考查了切线的判定方法以及扇形面积求法等知识,正确得出DO的长是解题关键.
21、 (1)C(2,2);(2)①反比例函数解析式为y=;②直线CD的解析式为y=﹣x+1;(1)m=1时,S△OEF最大,最大值为.
【解析】
(1)利用中点坐标公式即可得出结论;
(2)①先确定出点A坐标,进而得出点C坐标,将点C,D坐标代入反比例函数中即可得出结论;
②由n=1,求出点C,D坐标,利用待定系数法即可得出结论;
(1)设出点E坐标,进而表示出点F坐标,即可建立面积与m的函数关系式即可得出结论.
【详解】
(1)∵点C是OA的中点,A(4,4),O(0,0),
∴C,
∴C(2,2);
故答案为(2,2);
(2)①∵AD=1,D(4,n),
∴A(4,n+1),
∵点C是OA的中点,
∴C(2,),
∵点C,D(4,n)在双曲线上,
∴,
∴,
∴反比例函数解析式为;
②由①知,n=1,
∴C(2,2),D(4,1),
设直线CD的解析式为y=ax+b,
∴,
∴,
∴直线CD的解析式为y=﹣x+1;
(1)如图,由(2)知,直线CD的解析式为y=﹣x+1,
设点E(m,﹣m+1),
由(2)知,C(2,2),D(4,1),
∴2<m<4,
∵EF∥y轴交双曲线于F,
∴F(m,),
∴EF=﹣m+1﹣,
∴S△OEF=(﹣m+1﹣)×m=(﹣m2+1m﹣4)=﹣(m﹣1)2+,
∵2<m<4,
∴m=1时,S△OEF最大,最大值为
【点睛】
此题是反比例函数综合题,主要考查了待定系数法,线段的中点坐标公式,解本题的关键是建立S△OEF与m的函数关系式.
22、
【解析】
分析:此题应先将原分式方程两边同时乘以最简公分母,则原分式方程可化为整式方程,解出即可.
详解:去分母,得.
去括号,得.
移项,得 .
合并同类项,得 .
系数化为1,得.
经检验,原方程的解为.
点睛:本题主要考查分式方程的解法.注意:解分式方程必须检验.
23、(1)甲80件,乙20件;(2)x≤90
【解析】
(1)甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,利用共用2800元,列出方程后求解即可;
(2) 设甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,根据购买这批奖品的总费用不超过2900元列不等式求解即可.
【详解】
解:(1)设甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,
根据题意得30x+20(100﹣x)=2800,
解得x=80,
则100﹣x=20,
答:甲种奖品购买了80件,乙种奖品购买了20件;
(2)设甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,
根据题意得:30x+20(100﹣x)≤2900,
解得:x≤90,
【点睛】
本题主要考查一元一次方程与一元一次不等式的应用,根据已知条件正确列出方程与不等式是解题的关键.
24、(1)证明见解析;(2)AD=2.
【解析】
(1)如图,连接OA,根据同圆的半径相等可得:∠D=∠DAO,由同弧所对的圆周角相等及已知得:∠BAE=∠DAO,再由直径所对的圆周角是直角得:∠BAD=90°,可得结论;
(2)先证明OA⊥BC,由垂径定理得:,FB=BC,根据勾股定理计算AF、OB、AD的长即可.
【详解】
(1)如图,连接OA,交BC于F,
则OA=OB,
∴∠D=∠DAO,
∵∠D=∠C,
∴∠C=∠DAO,
∵∠BAE=∠C,
∴∠BAE=∠DAO,
∵BD是⊙O的直径,
∴∠BAD=90°,
即∠DAO+∠BAO=90°,
∴∠BAE+∠BAO=90°,即∠OAE=90°,
∴AE⊥OA,
∴AE与⊙O相切于点A;
(2)∵AE∥BC,AE⊥OA,
∴OA⊥BC,
∴,FB=BC,
∴AB=AC,
∵BC=2,AC=2,
∴BF=,AB=2,
在Rt△ABF中,AF==1,
在Rt△OFB中,OB2=BF2+(OB﹣AF)2,
∴OB=4,
∴BD=8,
∴在Rt△ABD中,AD=.
【点睛】
本题考查了圆的切线的判定、勾股定理及垂径定理的应用,属于基础题,熟练掌握切线的判定方法是关键:有切线时,常常“遇到切点连圆心得半径,证垂直”.
湖北省随州市广水市西北协作区2023-2024学年八上数学期末学业质量监测模拟试题含答案: 这是一份湖北省随州市广水市西北协作区2023-2024学年八上数学期末学业质量监测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,下列图案中,不是轴对称图形的是,已知+=0,则的值是,下列各式等内容,欢迎下载使用。
湖北省随州市广水市西北协作区重点中学2021-2022学年中考数学仿真试卷含解析: 这是一份湖北省随州市广水市西北协作区重点中学2021-2022学年中考数学仿真试卷含解析,共17页。试卷主要包含了﹣3的相反数是等内容,欢迎下载使用。
湖北省随州市2021-2022学年中考猜题数学试卷含解析: 这是一份湖北省随州市2021-2022学年中考猜题数学试卷含解析,共19页。试卷主要包含了答题时请按要求用笔,在同一平面内,下列说法等内容,欢迎下载使用。