|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021-2022学年吉大附中中考数学押题试卷含解析
    立即下载
    加入资料篮
    2021-2022学年吉大附中中考数学押题试卷含解析01
    2021-2022学年吉大附中中考数学押题试卷含解析02
    2021-2022学年吉大附中中考数学押题试卷含解析03
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年吉大附中中考数学押题试卷含解析

    展开
    这是一份2021-2022学年吉大附中中考数学押题试卷含解析,共27页。试卷主要包含了下列各式计算正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图所示的几何体的主视图是( )

    A. B. C. D.
    2.在△ABC中,点D、E分别在AB、AC上,如果AD=2,BD=3,那么由下列条件能够判定DE∥BC的是( )
    A.= B.= C.= D.=
    3.如图,在平面直角坐标系中,已知点A(―3,6)、B(―9,一3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是( )

    A.(―1,2)
    B.(―9,18)
    C.(―9,18)或(9,―18)
    D.(―1,2)或(1,―2)
    4.把8a3﹣8a2+2a进行因式分解,结果正确的是( )
    A.2a(4a2﹣4a+1) B.8a2(a﹣1) C.2a(2a﹣1)2 D.2a(2a+1)2
    5.已知抛物线y=ax2﹣(2a+1)x+a﹣1与x轴交于A(x1,0),B(x2,0)两点,若x1<1,x2>2,则a的取值范围是(  )
    A.a<3 B.0<a<3 C.a>﹣3 D.﹣3<a<0
    6.下列各式计算正确的是( )
    A.a2+2a3=3a5 B.a•a2=a3 C.a6÷a2=a3 D.(a2)3=a5
    7.如图,⊙O 是等边△ABC 的外接圆,其半径为 3,图中阴影部分的面积是( )

    A.π B. C.2π D.3π
    8.如图,在中,,分别以点和点为圆心,以大于的长为半径作弧,两弧相交于点和点,作直线交于点,交于点,连接.若,则的度数是( )

    A. B. C. D.
    9.如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,点E是△ABC的内心,过点E作EF∥AB交AC于点F,则EF的长为( )

    A. B. C. D.
    10.如图,点A、B、C、D在⊙O上,∠AOC=120°,点B是弧AC的中点,则∠D的度数是(  )

    A.60° B.35° C.30.5° D.30°
    11.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是(  )
    A. B. C. D.
    12.如图,DE是线段AB的中垂线,,,,则点A到BC的距离是  

    A.4 B. C.5 D.6
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.已知代数式2x﹣y的值是,则代数式﹣6x+3y﹣1的值是_____.
    14.如图,反比例函数(x>0)的图象与矩形OABC的边长AB、BC分别交于点E、F且AE=BE,则△OEF的面积的值为   .

    15.已知菱形的周长为10cm,一条对角线长为6cm,则这个菱形的面积是_____cm1.
    16.如图,AB为⊙O的弦,C为弦AB上一点,设AC=m,BC=n(m>n),将弦AB绕圆心O旋转一周,若线段BC扫过的面积为(m2﹣n2)π,则=______

    17.已知m=,n=,那么2016m﹣n=_____.
    18.如果正比例函数y=(k-2)x的函数值y随x的增大而减小,且它的图象与反比例函数y=的图象没有公共点,那么k的取值范围是______.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)先化简,再求值:,其中
    20.(6分)已知点A、B分别是x轴、y轴上的动点,点C、D是某个函数图象上的点,当四边形ABCD(A、B、C、D各点依次排列)为正方形时,称这个正方形为此函数图象的伴侣正方形.如图,正方形ABCD是一次函数y=x+1图象的其中一个伴侣正方形.
    (1)若某函数是一次函数y=x+1,求它的图象的所有伴侣正方形的边长;

    (2)若某函数是反比例函数(k>0),它的图象的伴侣正方形为ABCD,点D(2,m)(m<2)在反比例函数图象上,求m的值及反比例函数解析式;

    (3)若某函数是二次函数y=ax2+c(a≠0),它的图象的伴侣正方形为ABCD,C、D中的一个点坐标为(3,4).写出伴侣正方形在抛物线上的另一个顶点坐标_____,写出符合题意的其中一条抛物线解析式_____,并判断你写出的抛物线的伴侣正方形的个数是奇数还是偶数?_____.(本小题只需直接写出答案)

    21.(6分)已知点O是正方形ABCD对角线BD的中点.
    (1)如图1,若点E是OD的中点,点F是AB上一点,且使得∠CEF=90°,过点E作ME∥AD,交AB于点M,交CD于点N.
    ①∠AEM=∠FEM; ②点F是AB的中点;
    (2)如图2,若点E是OD上一点,点F是AB上一点,且使,请判断△EFC的形状,并说明理由;
    (3)如图3,若E是OD上的动点(不与O,D重合),连接CE,过E点作EF⊥CE,交AB于点F,当时,请猜想的值(请直接写出结论).
    22.(8分)如图,矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线经过A、C两点,与AB边交于点D.
    (1)求抛物线的函数表达式;
    (2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.
    ①求S关于m的函数表达式,并求出m为何值时,S取得最大值;
    ②当S最大时,在抛物线的对称轴l上若存在点F,使△FDQ为直角三角形,请直接写出所有符合条件的F的坐标;若不存在,请说明理由.

    23.(8分)如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,BF平分∠ABC交AD于点E,交AC于点F,求证:AE=AF.

    24.(10分)如图,平面直角坐标系xOy中,已知点A(0,3),点B(,0),连接AB,若对于平面内一点C,当△ABC是以AB为腰的等腰三角形时,称点C是线段AB的“等长点”.
    (1)在点C1(﹣2,3+2),点C2(0,﹣2),点C3(3+,﹣)中,线段AB的“等长点”是点________;
    (2)若点D(m,n)是线段AB的“等长点”,且∠DAB=60°,求点D的坐标;
    (3)若直线y=kx+3k上至少存在一个线段AB的“等长点”,求k的取值范围.

    25.(10分)某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.2008年,A市在省财政补助的基础上投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2010年该市计划投资“改水工程”1176万元.求A市投资“改水工程”的年平均增长率;从2008年到2010年,A市三年共投资“改水工程”多少万元?
    26.(12分)每年4月23日是世界读书日,某校为了解学生课外阅读情况,随机抽取20名学生,对每人每周用于课外阅读的平均时间(单位:min)进行调查,过程如下:
    收集数据:
    30
    60
    81
    50
    40
    110
    130
    146
    90
    100
    60
    81
    120
    140
    70
    81
    10
    20
    100
    81
    整理数据:
    课外阅读平均时间x(min)
    0≤x<40
    40≤x<80
    80≤x<120
    120≤x<160
    等级
    D
    C
    B
    A
    人数
    3
    a
    8
    b
    分析数据:
    平均数
    中位数
    众数
    80
    m
    n
    请根据以上提供的信息,解答下列问题:
    (1)填空:a=  ,b= ;m=  ,n=  ;
    (2)已知该校学生500人,若每人每周用于课外阅读的平均时间不少于80min为达标,请估计达标的学生数;
    (3)设阅读一本课外书的平均时间为260min,请选择适当的统计量,估计该校学生每人一年(按52周计)平均阅读多少本课外书?
    27.(12分)初三(5)班综合实践小组去湖滨花园测量人工湖的长,如图A、D是人工湖边的两座雕塑,AB、BC是湖滨花园的小路,小东同学进行如下测量,B点在A点北偏东60°方向,C点在B点北偏东45°方向,C点在D点正东方向,且测得AB=20米,BC=40米,求AD的长.(≈1.732,≈1.414,结果精确到0.01米)




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、A
    【解析】
    找到从正面看所得到的图形即可.
    【详解】
    解:从正面可看到从左往右2列一个长方形和一个小正方形,
    故选A.
    【点睛】
    本题考查了三视图的知识,主视图是从物体的正面看得到的视图.
    2、D
    【解析】
    根据平行线分线段成比例定理的逆定理,当或时,,然后可对各选项进行判断.
    【详解】
    解:当或时,,
    即或.
    所以D选项是正确的.
    【点睛】
    本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.也考查了平行线分线段成比例定理的逆定理.
    3、D
    【解析】
    试题分析:方法一:∵△ABO和△A′B′O关于原点位似,∴△ ABO∽△A′B′O且= .∴==.∴A′E=AD=2,OE=OD=1.∴A′(-1,2).同理可得A′′(1,―2).
    方法二:∵点A(―3,6)且相似比为,∴点A的对应点A′的坐标是(―3×,6×),∴A′(-1,2).
    ∵点A′′和点A′(-1,2)关于原点O对称,∴A′′(1,―2).
    故答案选D.

    考点:位似变换.
    4、C
    【解析】
    首先提取公因式2a,进而利用完全平方公式分解因式即可.
    【详解】
    解:8a3﹣8a2+2a
    =2a(4a2﹣4a+1)
    =2a(2a﹣1)2,故选C.
    【点睛】
    本题因式分解中提公因式法与公式法的综合运用.
    5、B
    【解析】
    由已知抛物线求出对称轴,
    解:抛物线:,对称轴,由判别式得出a的取值范围.
    ,,
    ∴,
    ①,.
    ②由①②得.
    故选B.
    6、B
    【解析】
    根据幂的乘方,底数不变指数相乘;同底数幂相除,底数不变,指数相减;同底数幂相乘,底数不变指数相加,对各选项分析判断利用排除法求解
    【详解】
    A.a2与2a3不是同类项,故A不正确;
    B.a•a2=a3,正确;
    C.原式=a4,故C不正确;
    D.原式=a6,故D不正确;
    故选:B.
    【点睛】
    此题考查同底数幂的乘法,幂的乘方与积的乘方,解题的关键在于掌握运算法则.
    7、D
    【解析】
    根据等边三角形的性质得到∠A=60°,再利用圆周角定理得到∠BOC=120°,然后根据扇形的面积公式计算图中阴影部分的面积即可.
    【详解】
    ∵△ABC 为等边三角形,
    ∴∠A=60°,
    ∴∠BOC=2∠A=120°,
    ∴图中阴影部分的面积= =3π.
    故选D.
    【点睛】
    本题考查了三角形的外接圆与外心、圆周角定理及扇形的面积公式,求得∠BOC=120°是解决问题的关键.
    8、B
    【解析】
    根据题意可知DE是AC的垂直平分线,CD=DA.即可得到∠DCE=∠A,而∠A和∠B互余可求出∠A,由三角形外角性质即可求出∠CDA的度数.
    【详解】
    解:∵DE是AC的垂直平分线,
    ∴DA=DC,
    ∴∠DCE=∠A,
    ∵∠ACB=90°,∠B=34°,
    ∴∠A=56°,
    ∴∠CDA=∠DCE+∠A=112°,
    故选B.
    【点睛】
    本题考查作图-基本作图、线段的垂直平分线的性质、等腰三角形的性质,三角形有关角的性质等知识,解题的关键是熟练运用这些知识解决问题,属于中考常考题型.
    9、A
    【解析】
    过E作EG∥AB,交AC于G,易得CG=EG,EF=AF,依据△ABC∽△GEF,即可得到EG:EF:GF,根据斜边的长列方程即可得到结论.
    【详解】
    过E作EG∥BC,交AC于G,则∠BCE=∠CEG.
    ∵CE平分∠BCA,∴∠BCE=∠ACE,∴∠ACE=∠CEG,∴CG=EG,同理可得:EF=AF.
    ∵BC∥GE,AB∥EF,∴∠BCA=∠EGF,∠BAC=∠EFG,∴△ABC∽△GEF.
    ∵∠ABC=90°,AB=6,BC=8,∴AC=10,∴EG:EF:GF=BC:BC:AC=4:3:5,设EG=4k=AG,则EF=3k=CF,FG=5k.
    ∵AC=10,∴3k+5k+4k=10,∴k=,∴EF=3k=.
    故选A.

    【点睛】
    本题考查了相似三角形的判定与性质,等腰三角形的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构相似三角形以及构造等腰三角形.
    10、D
    【解析】
    根据圆心角、弧、弦的关系定理得到∠AOB= ∠AOC,再根据圆周角定理即可解答.
    【详解】
    连接OB,
    ∵点B是弧的中点,
    ∴∠AOB= ∠AOC=60°,
    由圆周角定理得,∠D= ∠AOB=30°,
    故选D.

    【点睛】
    此题考查了圆心角、弧、弦的关系定理,解题关键在于利用好圆周角定理.
    11、C
    【解析】
    分析:将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.
    详解:将三个小区分别记为A、B、C,
    列表如下:

    A
    B
    C
    A
    (A,A)
    (B,A)
    (C,A)
    B
    (A,B)
    (B,B)
    (C,B)
    C
    (A,C)
    (B,C)
    (C,C)
    由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,
    所以两个组恰好抽到同一个小区的概率为.
    故选:C.
    点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
    12、A
    【解析】
    作于利用直角三角形30度角的性质即可解决问题.
    【详解】
    解:作于H.

    垂直平分线段AB,






    ,,

    故选A.
    【点睛】
    本题考查线段的垂直平分线的性质,等腰三角形的性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    由题意可知:2x-y=,然后等式两边同时乘以-3得到-6x+3y=-,然后代入计算即可.
    【详解】
    ∵2x-y=,
    ∴-6x+3y=-.
    ∴原式=--1=-.
    故答案为-.
    【点睛】
    本题主要考查的是求代数式的值,利用等式的性质求得-6x+3y=-是解题的关键.
    14、
    【解析】
    试题分析:如图,连接OB.

    ∵E、F是反比例函数(x>0)的图象上的点,EA⊥x轴于A,FC⊥y轴于C,∴S△AOE=S△COF=×1=.
    ∵AE=BE,∴S△BOE=S△AOE=,S△BOC=S△AOB=1.
    ∴S△BOF=S△BOC﹣S△COF=1﹣=.∴F是BC的中点.
    ∴S△OEF=S矩形AOCB﹣S△AOE﹣S△COF﹣S△BEF=6﹣﹣﹣×=.
    15、14
    【解析】
    根据菱形的性质,先求另一条对角线的长度,再运用菱形的面积等于对角线乘积的一半求解.
    【详解】
    解:如图,在菱形ABCD中,BD=2.
    ∵菱形的周长为10,BD=2,
    ∴AB=5,BO=3,
    ∴ AC=3.
    ∴面积
    故答案为 14.

    【点睛】
    此题考查了菱形的性质及面积求法,难度不大.
    16、
    【解析】
    先确定线段BC过的面积:圆环的面积,作辅助圆和弦心距OD,根据已知面积列等式可得:S=πOB2-πOC2=(m2-n2)π,则OB2-OC2=m2-n2,由勾股定理代入,并解一元二次方程可得结论.
    【详解】
    如图,连接OB、OC,以O为圆心,OC为半径画圆,

    则将弦AB绕圆心O旋转一周,线段BC扫过的面积为圆环的面积,
    即S=πOB2-πOC2=(m2-n2)π,
    OB2-OC2=m2-n2,
    ∵AC=m,BC=n(m>n),
    ∴AM=m+n,
    过O作OD⊥AB于D,
    ∴BD=AD=AB=,CD=AC-AD=m-=,
    由勾股定理得:OB2-OC2=(BD2+OD2)-(CD2+OD2)=BD2-CD2=(BD+CD)(BD-CD)=mn,
    ∴m2-n2=mn,
    m2-mn-n2=0,
    m=,
    ∵m>0,n>0,
    ∴m=,
    ∴,
    故答案为.
    【点睛】
    此题主要考查了勾股定理,垂径定理,一元二次方程等知识,根据旋转的性质确定线段BC扫过的面积是解题的关键,是一道中等难度的题目.
    17、1
    【解析】
    根据积的乘方的性质将m的分子转化为以3和5为底数的幂的积,然后化简从而得到m=n,再根据任何非零数的零次幂等于1解答.
    【详解】
    解:∵m===,
    ∴m=n,
    ∴2016m-n=20160=1.
    故答案为:1
    【点睛】
    本题考查了同底数幂的除法,积的乘方的性质,难点在于转化m的分母并得到m=n.
    18、
    【解析】
    先根据正比例函数y=(k-1)x的函数值y随x的增大而减小,可知k-1<0;再根据它的图象与反比例函数y=的图象没有公共点,说明反比例函数y=
    的图象经过一、三象限,k>0,从而可以求出k的取值范围.
    【详解】
    ∵y=(k-1)x的函数值y随x的增大而减小,
    ∴k-1<0
    ∴k<1
    而y=(k-1)x的图象与反比例函数y=
    的图象没有公共点,
    ∴k>0
    综合以上可知:0<k<1.
    故答案为0<k<1.
    【点睛】
    本题考查的是一次函数与反比例函数的相关性质,清楚掌握函数中的k的意义是解决本题的关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、 ;.
    【解析】
    先对小括号部分通分,同时把除化为乘,再根据分式的基本性质约分,最后代入求值.
    【详解】
    解:原式==
    把代入得:原式=.
    【点睛】
    本题考查分式的化简求值,计算题是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.
    20、(1);(2);(3)(﹣1,3);(7,﹣3);(﹣4,7);(4,1),对应的抛物线分别为 ; ;,偶数.
    【解析】
    (1)设正方形ABCD的边长为a,当点A在x轴负半轴、点B在y轴正半轴上时,可知3a=,求出a,
    (2)作DE、CF分别垂直于x、y轴,可知ADE≌△BAO≌△CBF,列出m的等式解出m,
    (3)本问的抛物线解析式不止一个,求出其中一个.
    【详解】
    解:(1)∵正方形ABCD是一次函数y=x+1图象的其中一个伴侣正方形.
    当点A在x轴正半轴、点B在y轴负半轴上时,
    ∴AO=1,BO=1,
    ∴正方形ABCD的边长为 ,
    当点A在x轴负半轴、点B在y轴正半轴上时,
    设正方形的边长为a,得3a=,
    ∴ ,
    所以伴侣正方形的边长为或;
    (2)作DE、CF分别垂直于x、y轴,

    知△ADE≌△BAO≌△CBF,
    此时,m<2,DE=OA=BF=m
    OB=CF=AE=2﹣m
    ∴OF=BF+OB=2
    ∴C点坐标为(2﹣m,2),
    ∴2m=2(2﹣m)
    解得m=1,
    反比例函数的解析式为y= ,
    (3)根据题意画出图形,如图所示:

    过C作CF⊥x轴,垂足为F,过D作DE⊥CF,垂足为E,
    ∴△CED≌△DGB≌△AOB≌△AFC,
    ∵C(3,4),即CF=4,OF=3,
    ∴EG=3,DE=4,故DG=DE﹣GE=DE﹣OF=4﹣3=1,
    则D坐标为(﹣1,3);
    设过D与C的抛物线的解析式为:y=ax2+b,
    把D和C的坐标代入得: ,
    解得 ,
    ∴满足题意的抛物线的解析式为y=x2+ ;
    同理可得D的坐标可以为:(7,﹣3);(﹣4,7);(4,1),;
    对应的抛物线分别为 ; ;,
    所求的任何抛物线的伴侣正方形个数为偶数.
    【点睛】
    本题考查了二次函数的综合题.灵活运用相关知识是解题关键.
    21、(1)①证明见解析;②证明见解析;(2)△EFC是等腰直角三角形.理由见解析;(3).
    【解析】
    试题分析:(1)①过点E作EG⊥BC,垂足为G,根据ASA证明△CEG≌△FEM得CE=FE,再根据SAS证明△ABE≌△CBE 得AE=CE,在△AEF中根据等腰三角形“三线合一”即可证明结论成立;②设AM=x,则AF=2x,在Rt△DEN中,∠EDN=45°,DE=DN=x, DO=2DE=2x,BD=2DO=4x.在Rt△ABD中,∠ADB=45°,AB=BD·sin45°=4x,又AF=2x,从而AF=AB,得到点F是AB的中点.;(2)过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),再证明△AME≌△FME(SAS),从而可得△EFC是等腰直角三角形.(3)方法同第(2)小题.过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),再证明△AEM≌△FEM (ASA),得AM=FM,设AM=x,则AF=2x,DN =x,DE=x,BD=x,AB=x,=2x:x=.
    试题解析:(1)①过点E作EG⊥BC,垂足为G,则四边形MBGE为正方形,ME=GE,∠MFG=90°,即∠MEF+∠FEG=90°,又∠CEG+∠FEG=90°,∴∠CEG=∠FEM.又GE=ME,∠EGC=∠EMF=90°,∴△CEG≌△FEM.∴CE=FE,∵四边形ABCD为正方形,∴AB=CB,∠ABE=∠CBE=45°,BE=BE,∴△ABE≌△CBE.∴AE=CE,又CE=FE,∴AE=FE,又EM⊥AB, ∴∠AEM=∠FEM.
    ②设AM=x,∵AE=FE,又EM⊥AB,∴AM=FM=x,∴AF=2x,由四边形AMND为矩形知,DN=AM=x,在Rt△DEN中,∠EDN=45°,∴DE=DN=x,∴DO=2DE=2x,∴BD=2DO=4x.在Rt△ABD中,∠ADB=45°,∴AB=BD·sin45°=4x·=4x,又AF=2x,∴AF=AB,∴点F是AB的中点.
    (2)△EFC是等腰直角三角形.过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),∴∠AEM=∠CEG,设AM=x,则DN=AM=x,DE =x,DO=3DE=3x,BD=2DO=6x.∴AB=6x,又,∴AF=2x,又AM=x,∴AM=MF=x,∴△AME≌△FME(SAS),∴AE=FE,∠AEM=∠FEM,又AE=CE,∠AEM=∠CEG,∴FE=CE,∠FEM=∠CEG,又∠MEG=90°,∴∠MEF+∠FEG=90°,∴∠CEG+∠FEG=90°,即∠CEF=90°,又FE=CE,∴△EFC是等腰直角三角形.
    (3)过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),∴∠AEM=∠CEG. ∵EF⊥CE,∴∠FEC =90°,∴∠CEG+∠FEG=90°.又∠MEG =90°,∴∠MEF+∠FEG=90°,∴∠CEG=∠MEF,∵∠CEG =∠AEF,∴∠AEF=∠MEF,∴△AEM≌△FEM (ASA),∴AM=FM.设AM=x,则AF=2x,DN =x,DE=x,∴BD=x.∴AB=x.∴=2x:x=.

    考点:四边形综合题.
    22、(1);(2)①,当m=5时,S取最大值;②满足条件的点F共有四个,坐标分别为,,,,
    【解析】
    (1)将A、C两点坐标代入抛物线y=-x2+bx+c,即可求得抛物线的解析式;
    (2)①先用m表示出QE的长度,进而求出三角形的面积S关于m的函数;
    ②直接写出满足条件的F点的坐标即可,注意不要漏写.
    【详解】
    解:(1)将A、C两点坐标代入抛物线,得 ,
    解得: ,
    ∴抛物线的解析式为y=﹣x2+x+8;
    (2)①∵OA=8,OC=6,
    ∴AC= =10,
    过点Q作QE⊥BC与E点,则sin∠ACB = = =,
    ∴ =,
    ∴QE=(10﹣m),
    ∴S=•CP•QE=m×(10﹣m)=﹣m2+3m;
    ②∵S=•CP•QE=m×(10﹣m)=﹣m2+3m=﹣(m﹣5)2+,
    ∴当m=5时,S取最大值;
    在抛物线对称轴l上存在点F,使△FDQ为直角三角形,
    ∵抛物线的解析式为y=﹣x2+x+8的对称轴为x=,
    D的坐标为(3,8),Q(3,4),
    当∠FDQ=90°时,F1(,8),
    当∠FQD=90°时,则F2(,4),
    当∠DFQ=90°时,设F(,n),
    则FD2+FQ2=DQ2,
    即+(8﹣n)2++(n﹣4)2=16,
    解得:n=6± ,
    ∴F3(,6+),F4(,6﹣),
    满足条件的点F共有四个,坐标分别为
    F1(,8),F2(,4),F3(,6+),F4(,6﹣).

    【点睛】
    本题考查二次函数的综合应用能力,其中涉及到的知识点有抛物线的解析式的求法抛物线的最值等知识点,是各地中考的热点和难点,解题时注意数形结合数学思想的运用,同学们要加强训练,属于中档题.
    23、见解析
    【解析】
    根据角平分线的定义可得∠ABF=∠CBF,由已知条件可得∠ABF+∠AFB=∠CBF+∠BED=90°,根据余角的性质可得∠AFB=∠BED,即可求得∠AFE=∠AEF,由等腰三角形的判定即可证得结论.
    【详解】
    ∵BF 平分∠ABC,
    ∴∠ABF=∠CBF,
    ∵∠BAC=90°,AD⊥BC,
    ∴∠ABF+∠AFB=∠CBF+∠BED=90°,
    ∴∠AFB=∠BED,
    ∵∠AEF=∠BED,
    ∴∠AFE=∠AEF,
    ∴AE=AF.
    【点睛】
    本题考查了等腰三角形的判定、直角三角形的性质,根据余角的性质证得∠AFB=∠BED是解题的关键.
    24、(1)C1,C3;(2)D(﹣,0)或D(,3);(3)﹣≤k≤
    【解析】
    (1)直接利用线段AB的“等长点”的条件判断;
    (2)分两种情况讨论,利用对称性和垂直的性质即可求出m,n;
    (3)先判断出直线y=kx+3与圆A,B相切时,如图2所示,利用相似三角形的性质即可求出结论.
    【详解】
    (1)∵A(0,3),B(,0),
    ∴AB=2,
    ∵点C1(﹣2,3+2),
    ∴AC1==2,
    ∴AC1=AB,
    ∴C1是线段AB的“等长点”,
    ∵点C2(0,﹣2),
    ∴AC2=5,BC2==,
    ∴AC2≠AB,BC2≠AB,
    ∴C2不是线段AB的“等长点”,
    ∵点C3(3+,﹣),
    ∴BC3==2,
    ∴BC3=AB,
    ∴C3是线段AB的“等长点”;
    故答案为C1,C3;
    (2)如图1,

    在Rt△AOB中,OA=3,OB=,
    ∴AB=2,tan∠OAB==,
    ∴∠OAB=30°,
    当点D在y轴左侧时,
    ∵∠DAB=60°,
    ∴∠DAO=∠DAB﹣∠BAO=30°,
    ∵点D(m,n)是线段AB的“等长点”,
    ∴AD=AB,
    ∴D(﹣,0),
    ∴m=,n=0,
    当点D在y轴右侧时,
    ∵∠DAB=60°,
    ∴∠DAO=∠BAO+∠DAB=90°,
    ∴n=3,
    ∵点D(m,n)是线段AB的“等长点”,
    ∴AD=AB=2,
    ∴m=2;
    ∴D(,3)
    (3)如图2,

    ∵直线y=kx+3k=k(x+3),
    ∴直线y=kx+3k恒过一点P(﹣3,0),
    ∴在Rt△AOP中,OA=3,OP=3,
    ∴∠APO=30°,
    ∴∠PAO=60°,
    ∴∠BAP=90°,
    当PF与⊙B相切时交y轴于F,
    ∴PA切⊙B于A,
    ∴点F就是直线y=kx+3k与⊙B的切点,
    ∴F(0,﹣3),
    ∴3k=﹣3,
    ∴k=﹣,
    当直线y=kx+3k与⊙A相切时交y轴于G切点为E,
    ∴∠AEG=∠OPG=90°,
    ∴△AEG∽△POG,
    ∴,
    ∴=,解得:k=或k=(舍去)
    ∵直线y=kx+3k上至少存在一个线段AB的“等长点”,
    ∴﹣≤k≤,
    【点睛】
    此题是一次函数综合题,主要考查了新定义,锐角三角函数,直角三角形的性质,等腰三角形的性质,对称性,解(1)的关键是理解新定义,解(2)的关键是画出图形,解(3)的关键是判断出直线和圆A,B相切时是分界点.
    25、 (1) 40%;(2) 2616.
    【解析】
    (1)设A市投资“改水工程”的年平均增长率是x.根据:2008年,A市投入600万元用于“改水工程”,2010年该市计划投资“改水工程”1176万元,列方程求解;
    (2)根据(1)中求得的增长率,分别求得2009年和2010年的投资,最后求和即可.
    【详解】
    解:(1)设A市投资“改水工程”年平均增长率是x,则
    .解之,得或(不合题意,舍去).
    所以,A市投资“改水工程”年平均增长率为40%.
    (2)600+600×1.4+1176=2616(万元).
    A市三年共投资“改水工程”2616万元.
    26、(1)a=5,b=4;m=81,n=81;(2)300人;(3)16本
    【解析】
    (1)根据统计表收集数据可求a,b,再根据中位数、众数的定义可求m,n;
    (2)达标的学生人数=总人数×达标率,依此即可求解;
    (3)本题需先求出阅读课外书的总时间,再除以平均阅读一本课外书的时间即可得出结果.
    【详解】
    解:(1)由统计表收集数据可知a=5,b=4,m=81,n=81;
    (2)(人).
    答:估计达标的学生有300人;
    (3)80×52÷260=16(本).
    答:估计该校学生每人一年(按52周计算)平均阅读16本课外书.
    【点睛】
    本题主要考查统计表以及中位数,众数,估计达标人数等,能够从统计表中获取有效信息是解题的关键.
    27、AD=38.28米.
    【解析】
    过点B作BE⊥DA,BF⊥DC,垂足分别为E、F,已知AD=AE+ED,则分别求得AE、DE的长即可求得AD的长.
    【详解】
    过点B作BE⊥DA,BF⊥DC,垂足分别为E,F,
    由题意知,AD⊥CD
    ∴四边形BFDE为矩形
    ∴BF=ED
    在Rt△ABE中,AE=AB•cos∠EAB
    在Rt△BCF中,BF=BC•cos∠FBC
    ∴AD=AE+BF=20•cos60°+40•cos45°
    =20×+40×=10+20
    =10+20×1.414
    =38.28(米).
    即AD=38.28米.

    【点睛】
    解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.

    相关试卷

    吉林省长春吉大附中力旺实验中学2021-2022学年中考三模数学试题含解析: 这是一份吉林省长春吉大附中力旺实验中学2021-2022学年中考三模数学试题含解析,共24页。试卷主要包含了考生要认真填写考场号和座位序号,点A,下列计算,结果等于a4的是等内容,欢迎下载使用。

    2022届吉林省长春吉大附中力旺实验中学中考数学全真模拟试题含解析: 这是一份2022届吉林省长春吉大附中力旺实验中学中考数学全真模拟试题含解析,共23页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。

    2021-2022学年吉林省长春市吉大附中实验校十校联考最后数学试题含解析: 这是一份2021-2022学年吉林省长春市吉大附中实验校十校联考最后数学试题含解析,共17页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map