数学三年级下册初步认识轴对称图形教学设计
展开1. 经历探索简单图形轴对称的过程,进一步体验轴对称的特征,发展空间观念。
2. 探索并掌握等腰三角形的轴对称性及其相关性质。
3. 通过学生的操作与思考,使学生掌握等腰三角形和等边三角形的轴对称性及其有关性质,从而发展空间观念。
三、教学设计分析
第一环节 知识回顾
活动目的:通过问题,希望学生能回忆起前两节所学内容,培养学生善于观察图形、乐于探索研究的学习品质及全面思考的能力。
第二环节 创设情境 导入新课
活动内容:
1. 认识等腰三角形。给出三种等腰三角形的形状,包括锐角、钝角、直角形状的图形。
2. 介绍等腰三角形的概念及各部分名称。给出生活中含有等腰三角形的建筑物图片,生活中的实例随处可见,给学生们呈现最直观的现象。如艾菲尔铁塔、埃及金字塔等。
注意事项:学生可能在回答次问题时表现出差异,有的学生可能在分析等腰三角形特点的基础上直接想象出它的对称轴,有的学生可能需要借助折叠等活动寻找出对称轴,教师要鼓励学生进行充分的交流,注重操作和思考的有机结合。对于通过想象解决问题的学生,鼓励他们通过操作进行验证,对于通过操作得出结论的学生,鼓励他们重新观察等腰三角形的轴对称性。
第三环节 动手操作 探求新知
活动内容:
等腰三角形是一种特殊的三角形,它除具有一般三角形的性质外,还有一些特殊的性质吗?拿出你的等腰三角形纸片,把纸片折折看,你能发现什么现象吗?
1. 思考
(1)等腰三角形是轴对称图形吗?找出对称轴。
(2)顶角的平分线所在的直线是等腰三角形的对称轴吗?
(3)底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高呢?
(4)沿对称轴折叠,你能发现等腰三角形的哪些特征?
2.归纳
(1)等腰三角形是轴对称图形。
(2)∠B =∠C
(3 )∠BAD=∠CAD,AD为顶角的平分线
(4)∠ADB=∠ADC=90°AD为底边上的高
(5 )BD=CD,AD为底边上的中线。
等腰三角形的特征:
1).等腰三角形是轴对称图形
2).等腰三角形的顶角平分线、底边上的中线、底边上的高重合(也称“三线合一”),它们所在的直线都是等腰三角形的对称轴。
3).等腰三角形的两个底角相等。
3.推理
等腰三角形顶角的平分线、底边上的中线、底边上的高重合
(也称为“三线合一”).
证明 :因为AD是角平分线,
所以 ∠BAD= ∠ CAD
在ΔABD和ΔACD中,
因为AB=AC, ∠BAD= ∠CAD,AD=AD
所以 ΔABD ≌ ΔACD
所以BD=CD, ∠ADB=∠ ADC=90˚
所以AD是ΔABC的角平分线、底边上的中线、底边上的高。
第四环节 知识延伸
活动内容:1.等边三角形的有关概念有几条对称轴?
2. 你能发现等边三角形的哪些特征?
第五环节 知识逆用
活动内容:你有哪些方法可以得到一个等腰三角形?与同伴交流。
1. 折纸:将长方形纸片对折,沿对角线折叠,再沿折痕展开。
2.利用圆规
第六环节 练习与提高
活动内容:以小组竞赛的方式做习题:
1.在等腰ΔABC中,AB=AC顶角∠A=100°那么底角∠B=_______∠C =_______ .
2. 在△ABC中,AB=AC,∠B=72°,那么∠A=______
3. 在等腰三角形△ABC中,有一个角为50°,那么另外两个角分别是多少?
4.如图,在△ABC中,AB=AC时,
(1)因为AD⊥BC
所以∠ ____= ∠_____;____=____
(2) 因为AD是中线
所以____⊥____; ∠_____=∠_____
(3) 因为 AD是角平分线
所以____ ⊥____;_____=____
第七环节:课堂小结
活动内容:师生互相交流总结本节所学,等腰三角形的性质和等边三角形的性质,以及在习题中出现的解题方法。
活动目的:鼓励学生结合本节课的学习,谈自己的收获与感想(学生畅所欲言,教师给予鼓励)
实际教学效果:学生畅所欲言自己的切身感受与实际收获,在丰富的现实情景中,观察生活中的轴对称现象,体会了轴对称在现实生活中的广泛应用和丰富的文化价值。
数学三年级下册第四单元 旋转、平移和轴对称初步认识轴对称图形教案: 这是一份数学三年级下册第四单元 旋转、平移和轴对称初步认识轴对称图形教案,共3页。教案主要包含了游戏导入,操作实践,探索新知,课后延展等内容,欢迎下载使用。
小学数学西师大版三年级下册初步认识轴对称图形教案: 这是一份小学数学西师大版三年级下册初步认识轴对称图形教案,共4页。教案主要包含了情景引入,探索新知,课堂练习,深化认识等内容,欢迎下载使用。
小学西师大版初步认识轴对称图形教案: 这是一份小学西师大版初步认识轴对称图形教案,共8页。教案主要包含了新授课,练习等内容,欢迎下载使用。