2021-2022学年辽宁省朝阳市市级名校中考数学对点突破模拟试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,小颖为测量学校旗杆AB的高度,她在E处放置一块镜子,然后退到C处站立,刚好从镜子中看到旗杆的顶部B.已知小颖的眼睛D离地面的高度CD=1.5m,她离镜子的水平距离CE=0.5m,镜子E离旗杆的底部A处的距离AE=2m,且A、C、E三点在同一水平直线上,则旗杆AB的高度为( )
A.4.5m B.4.8m C.5.5m D.6 m
2.已知点M (-2,3 )在双曲线上,则下列一定在该双曲线上的是( )
A.(3,-2 ) B.(-2,-3 ) C.(2,3 ) D.(3,2)
3.如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为( )
A.800sinα米 B.800tanα米 C.米 D.米
4.如图,在中,,将绕点逆时针旋转,使点落在线段上的点处,点落在点处,则两点间的距离为( )
A. B. C. D.
5.如果一组数据1、2、x、5、6的众数是6,则这组数据的中位数是( )
A.1 B.2 C.5 D.6
6.若一个三角形的两边长分别为5和7,则该三角形的周长可能是( )
A.12 B.14 C.15 D.25
7.一列动车从A地开往B地,一列普通列车从B地开往A地,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),如图中的折线表示y与x之间的函数关系.下列叙述错误的是( )
A.AB两地相距1000千米
B.两车出发后3小时相遇
C.动车的速度为
D.普通列车行驶t小时后,动车到达终点B地,此时普通列车还需行驶千米到达A地
8.当ab>0时,y=ax2与y=ax+b的图象大致是( )
A. B. C. D.
9.如图,△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=4,则扇形BDE的面积为何?( )
A. B. C. D.
10.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度数为( ).
A.60 ° B.75° C.85° D.90°
11.已知抛物线y=(x﹣)(x﹣)(a为正整数)与x轴交于Ma、Na两点,以MaNa表示这两点间的距离,则M1N1+M2N2+…+M2018N2018的值是( )
A. B. C. D.
12.如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是( )
A.60° B.50° C.40° D.30°
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.举重比赛的总成绩是选手的挺举与抓举两项成绩之和,若其中一项三次挑战失败,则该项成绩为 0,甲、乙是同一重量级别的举重选手,他们近三年六次重要比赛的成绩如下(单位:公斤):
如果你是教练,要选派一名选手参加国际比赛,那么你会选择_____(填“甲” 或“乙”),理由是___________.
14.分解因式:x2y﹣2xy2+y3=_____.
15.化简:________.
16.在□ABCD中,按以下步骤作图:①以点B为圆心,以BA长为半径作弧,交BC于点E;②分别以A,E为圆心,大于AE的长为半径作弧,两弧交于点F;③连接BF,延长线交AD于点G. 若∠AGB=30°,则∠C=_______°.
17.已知二次函数y=ax2+bx(a≠0)的最小值是﹣3,若关于x的一元二次方程ax2+bx+c=0有实数根,则c的最大值是_____.
18.如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=1.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)先化简,再求值:(1﹣)÷,其中x是不等式组的整数解
20.(6分)已知,△ABC中,∠A=68°,以AB为直径的⊙O与AC,BC的交点分别为D,E
(Ⅰ)如图①,求∠CED的大小;
(Ⅱ)如图②,当DE=BE时,求∠C的大小.
21.(6分)某学校“智慧方园”数学社团遇到这样一个题目:
如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的长.
经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).
请回答:∠ADB= °,AB= .请参考以上解决思路,解决问题:
如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.
22.(8分)如图,平面直角坐标系中,直线AB:交y轴于点A(0,1),交x轴于点B.直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点,且在点D的上方,设P(1,n).求直线AB的解析式和点B的坐标;求△ABP的面积(用含n的代数式表示);当S△ABP=2时,以PB为边在第一象限作等腰直角三角形BPC,求出点C的坐标.
23.(8分)如图,AB∥CD,∠1=∠2,求证:AM∥CN
24.(10分)风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图①),图②是平面图.光明中学的数学兴趣小组针对风电塔杆进行了测量,甲同学站在平地上的A处测得塔杆顶端C的仰角是55°,乙同学站在岩石B处测得叶片的最高位置D的仰角是45°(D,C,H在同一直线上,G,A,H在同一条直线上),他们事先从相关部门了解到叶片的长度为15米(塔杆与叶片连接处的长度忽略不计),岩石高BG为4米,两处的水平距离AG为23米,BG⊥GH,CH⊥AH,求塔杆CH的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)
25.(10分)新春佳节,电子鞭炮因其安全、无污染开始走俏.某商店经销一种电子鞭炮,已知这种电子鞭炮的成本价为每盒80元,市场调查发现,该种电子鞭炮每天的销售量y(盒)与销售单价x(元)有如下关系:y=﹣2x+320(80≤x≤160).设这种电子鞭炮每天的销售利润为w元.
(1)求w与x之间的函数关系式;
(2)该种电子鞭炮销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?
(3)该商店销售这种电子鞭炮要想每天获得2400元的销售利润,又想卖得快.那么销售单价应定为多少元?
26.(12分)如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.
(1)填空:∠AHC ∠ACG;(填“>”或“<”或“=”)
(2)线段AC,AG,AH什么关系?请说明理由;
(3)设AE=m,
①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.
②请直接写出使△CGH是等腰三角形的m值.
27.(12分)2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.
(1)甲种商品与乙种商品的销售单价各多少元?
(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
根据题意得出△ABE∽△CDE,进而利用相似三角形的性质得出答案.
【详解】
解:由题意可得:AE=2m,CE=0.5m,DC=1.5m,
∵△ABC∽△EDC,
∴,
即,
解得:AB=6,
故选:D.
【点睛】
本题考查的是相似三角形在实际生活中的应用,根据题意得出△ABE∽△CDE是解答此题的关键.
2、A
【解析】
因为点M(-2,3)在双曲线上,所以xy=(-2)×3=-6,四个答案中只有A符合条件.故选A
3、D
【解析】
【分析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根据tanα=,即可解决问题.
【详解】在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,
∴tanα=,
∴AB=,
故选D.
【点睛】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是熟练掌握基本知识,属于中考常考题型.
4、A
【解析】
先利用勾股定理计算出AB,再在Rt△BDE中,求出BD即可;
【详解】
解:∵∠C=90°,AC=4,BC=3,
∴AB=5,
∵△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,
∴AE=AC=4,DE=BC=3,
∴BE=AB-AE=5-4=1,
在Rt△DBE中,BD=,
故选A.
【点睛】
本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.
5、C
【解析】
分析:根据众数的定义先求出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即可得出答案.
详解:∵数据1,2,x,5,6的众数为6,
∴x=6,
把这些数从小到大排列为:1,2,5,6,6,最中间的数是5,
则这组数据的中位数为5;
故选C.
点睛:本题考查了中位数的知识点,将一组数据按照从小到大的顺序排列,如果数据的个数为奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数为偶数,则中间两个数据的平均数就是这组数据的中位数.
6、C
【解析】
先根据三角形三条边的关系求出第三条边的取值范围,进而求出周长的取值范围,从而可的求出符合题意的选项.
【详解】
∴三角形的两边长分别为5和7,
∴2<第三条边<12,
∴5+7+2<三角形的周长<5+7+12,
即14<三角形的周长<24,
故选C.
【点睛】
本题考查了三角形三条边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边,据此解答即可.
7、C
【解析】
可以用物理的思维来解决这道题.
【详解】
未出发时,x=0,y=1000,所以两地相距1000千米,所以A选项正确;y=0时两车相遇,x=3,所以B选项正确;设动车速度为V1,普车速度为V2,则3(V1+ V2)=1000,所以C选项错误;D选项正确.
【点睛】
理解转折点的含义是解决这一类题的关键.
8、D
【解析】
∵ab>0,∴a、b同号.当a>0,b>0时,抛物线开口向上,顶点在原点,一次函数过一、二、三象限,没有图象符合要求;
当a<0,b<0时,抛物线开口向下,顶点在原点,一次函数过二、三、四象限,B图象符合要求.
故选B.
9、C
【解析】
分析:求出扇形的圆心角以及半径即可解决问题;
详解:∵∠A=60°,∠B=100°,
∴∠C=180°﹣60°﹣100°=20°,
∵DE=DC,
∴∠C=∠DEC=20°,
∴∠BDE=∠C+∠DEC=40°,
∴S扇形DBE=.
故选C.
点睛:本题考查扇形的面积公式、三角形内角和定理等知识,解题的关键是记住扇形的面积公式:S=.
10、C
【解析】
试题分析:根据旋转的性质知,∠EAC=∠BAD=65°,∠C=∠E=70°.
如图,设AD⊥BC于点F.则∠AFB=90°,
∴在Rt△ABF中,∠B=90°-∠BAD=25°,
∴在△ABC中,∠BAC=180°-∠B-∠C=180°-25°-70°=85°,
即∠BAC的度数为85°.故选C.
考点: 旋转的性质.
11、C
【解析】
代入y=0求出x的值,进而可得出MaNa=-,将其代入M1N1+M2N2+…+M2018N2018中即可求出结论.
【详解】
解:当y=0时,有(x-)(x-)=0,
解得:x1=,x2=,
∴MaNa=-,
∴M1N1+M2N2+…+M2018N2018=1-+-+…+-=1-=.
故选C.
【点睛】
本题考查了抛物线与x轴的交点坐标、二次函数图象上点的坐标特征以及规律型中数字的变化类,利用二次函数图象上点的坐标特征求出MaNa的值是解题的关键.
12、C
【解析】
试题分析:∵FE⊥DB,∵∠DEF=90°,∵∠1=50°,∴∠D=90°﹣50°=40°,∵AB∥CD,∴∠2=∠D=40°.故选C.
考点:平行线的性质.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、乙 乙的比赛成绩比较稳定.
【解析】
观察表格中的数据可知:甲的比赛成绩波动幅度较大,故甲的比赛成绩不稳定;乙的比赛成绩波动幅度较小,故乙的比赛成绩比较稳定,据此可得结论.
【详解】
观察表格中的数据可得,甲的比赛成绩波动幅度较大,故甲的比赛成绩不稳定; 乙的比赛成绩波动幅度较小,故乙的比赛成绩比较稳定;
所以要选派一名选手参加国际比赛,应该选择乙,理由是乙的比赛成绩比较稳定.
故答案为乙,乙的比赛成绩比较稳定.
【点睛】
本题主要考查了方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
14、y(x﹣y)2
【解析】
原式提取公因式,再利用完全平方公式分解即可
【详解】
x2y﹣2xy2+y3=y(x2-2xy+y2)=y(x-y)2.
【点睛】
本题考查了提公因式法与公式法的综合运用,熟练掌握运算法则是解本题的关键.
15、
【解析】
根据平面向量的加法法则计算即可
【详解】
.
故答案为:
【点睛】
本题考查平面向量的加减法则,解题的关键是熟练掌握平面向量的加减法则,注意平面向量的加减适合加法交换律以及结合律,适合去括号法则.
16、120
【解析】
首先证明∠ABG=∠GBE=∠AGB=30°,可得∠ABC=60°,再利用平行四边形的邻角互补即可解决问题.
【详解】
由题意得:∠GBA=∠GBE,
∵AD∥BC,
∴∠AGB=∠GBE=30°,
∴∠ABC=60°,
∵AB∥CD,
∴∠C=180°-∠ABC=120°,
故答案为:120.
【点睛】
本题考查基本作图、平行四边形的性质等知识,解题的关键是熟练掌握基本知识
17、3
【解析】
由一元二次方程ax2+bx+c=0有实数根,可得y=ax2+bx(a≠0)和y=-c有交点,由此即可解答.
【详解】
∵一元二次方程ax2+bx+c=0有实数根,
∴抛物线y=ax2+bx(a≠0)和直线y=-c有交点,
∴-c≥-3,即c≤3,
∴c的最大值为3.
故答案为:3.
【点睛】
本题考查了一元二次方程与二次函数,根据一元二次方程有实数根得到抛物线y=ax2+bx(a≠0)和直线y=-c有交点是解决问题的关键.
18、
【解析】
直接利用相似三角形的判定与性质得出△ONC1三边关系,再利用勾股定理得出答案.
【详解】
过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M,
由题意可得:∠C1NO=∠A1MO=90°,
∠1=∠2=∠1,
则△A1OM∽△OC1N,
∵OA=5,OC=1,
∴OA1=5,A1M=1,
∴OM=4,
∴设NO=1x,则NC1=4x,OC1=1,
则(1x)2+(4x)2=9,
解得:x=±(负数舍去),
则NO=,NC1=,
故点C的对应点C1的坐标为:(﹣,).
故答案为(﹣,).
【点睛】
此题主要考查了矩形的性质以及勾股定理等知识,正确得出△A1OM∽△OC1N是解题关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、x=3时,原式=
【解析】
原式括号中两项通分并利用同分母分式的减法法则计算,再利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,求出不等式组的解集,找出解集中的整数计算得出到x的值,代入计算即可求出值.
【详解】
解:原式=÷
=×
=,
解不等式组得,2<x<,
∵x取整数,
∴x=3,
当x=3时,原式=.
【点睛】
本题主要考查分式额化简求值及一元一次不等式组的整数解.
20、(Ⅰ)68°(Ⅱ)56°
【解析】
(1)圆内接四边形的一个外角等于它的内对角,利用圆内接四边形的性质证明∠CED=∠A即可,(2)连接AE,在Rt△AEC中,先根据同圆中,相等的弦所对弧相等,再根据同圆中,相等的弧所对圆周角相等, 求出∠EAC,最后根据直径所对圆周是直角,利用直角三角形两锐角互余即可解决问题.
【详解】
(Ⅰ)∵四边形ABED 圆内接四边形,
∴∠A+∠DEB=180°,
∵∠CED+∠DEB=180°,
∴∠CED=∠A,
∵∠A=68°,
∴∠CED=68°.
(Ⅱ)连接AE.
∵DE=BD,
∴,
∴∠DAE=∠EAB=∠CAB=34°,
∵AB是直径,
∴∠AEB=90°,
∴∠AEC=90°,
∴∠C=90°﹣∠DAE=90°﹣34°=56°
【点睛】
本题主要考查圆周角定理、直径的性质、圆内接四边形的性质等知识,解决本题的关键是灵活运用所学知识解决问题.
21、(1)75;4;(2)CD=4.
【解析】
(1)根据平行线的性质可得出∠ADB=∠OAC=75°,结合∠BOD=∠COA可得出△BOD∽△COA,利用相似三角形的性质可求出OD的值,进而可得出AD的值,由三角形内角和定理可得出∠ABD=75°=∠ADB,由等角对等边可得出AB=AD=4,此题得解;
(2)过点B作BE∥AD交AC于点E,同(1)可得出AE=4,在Rt△AEB中,利用勾股定理可求出BE的长度,再在Rt△CAD中,利用勾股定理可求出DC的长,此题得解.
【详解】
解:(1)∵BD∥AC,
∴∠ADB=∠OAC=75°.
∵∠BOD=∠COA,
∴△BOD∽△COA,
∴.
又∵AO=3,
∴OD=AO=,
∴AD=AO+OD=4.
∵∠BAD=30°,∠ADB=75°,
∴∠ABD=180°-∠BAD-∠ADB=75°=∠ADB,
∴AB=AD=4.
(2)过点B作BE∥AD交AC于点E,如图所示.
∵AC⊥AD,BE∥AD,
∴∠DAC=∠BEA=90°.
∵∠AOD=∠EOB,
∴△AOD∽△EOB,
∴.
∵BO:OD=1:3,
∴.
∵AO=3,
∴EO=,
∴AE=4.
∵∠ABC=∠ACB=75°,
∴∠BAC=30°,AB=AC,
∴AB=2BE.
在Rt△AEB中,BE2+AE2=AB2,即(4)2+BE2=(2BE)2,
解得:BE=4,
∴AB=AC=8,AD=1.
在Rt△CAD中,AC2+AD2=CD2,即82+12=CD2,
解得:CD=4.
【点睛】
本题考查了相似三角形的性质、等腰三角形的判定与性质、勾股定理以及平行线的性质,解题的关键是:(1)利用相似三角形的性质求出OD的值;(2)利用勾股定理求出BE、CD的长度.
22、 (1) AB的解析式是y=-x+1.点B(3,0).(2)n-1;(3) (3,4)或(5,2)或(3,2).
【解析】
试题分析:(1)把A的坐标代入直线AB的解析式,即可求得b的值,然后在解析式中,令y=0,求得x的值,即可求得B的坐标;
(2)过点A作AM⊥PD,垂足为M,求得AM的长,即可求得△BPD和△PAB的面积,二者的和即可求得;
(3)当S△ABP=2时,n-1=2,解得n=2,则∠OBP=45°,然后分A、B、P分别是直角顶点求解.
试题解析:(1)∵y=-x+b经过A(0,1),
∴b=1,
∴直线AB的解析式是y=-x+1.
当y=0时,0=-x+1,解得x=3,
∴点B(3,0).
(2)过点A作AM⊥PD,垂足为M,则有AM=1,
∵x=1时,y=-x+1=,P在点D的上方,
∴PD=n-,S△APD=PD•AM=×1×(n-)=n-
由点B(3,0),可知点B到直线x=1的距离为2,即△BDP的边PD上的高长为2,
∴S△BPD=PD×2=n-,
∴S△PAB=S△APD+S△BPD=n-+n-=n-1;
(3)当S△ABP=2时,n-1=2,解得n=2,
∴点P(1,2).
∵E(1,0),
∴PE=BE=2,
∴∠EPB=∠EBP=45°.
第1种情况,如图1,∠CPB=90°,BP=PC,过点C作CN⊥直线x=1于点N.
∵∠CPB=90°,∠EPB=45°,
∴∠NPC=∠EPB=45°.
又∵∠CNP=∠PEB=90°,BP=PC,
∴△CNP≌△BEP,
∴PN=NC=EB=PE=2,
∴NE=NP+PE=2+2=4,
∴C(3,4).
第2种情况,如图2∠PBC=90°,BP=BC,
过点C作CF⊥x轴于点F.
∵∠PBC=90°,∠EBP=45°,
∴∠CBF=∠PBE=45°.
又∵∠CFB=∠PEB=90°,BC=BP,
∴△CBF≌△PBE.
∴BF=CF=PE=EB=2,
∴OF=OB+BF=3+2=5,
∴C(5,2).
第3种情况,如图3,∠PCB=90°,CP=EB,
∴∠CPB=∠EBP=45°,
在△PCB和△PEB中,
∴△PCB≌△PEB(SAS),
∴PC=CB=PE=EB=2,
∴C(3,2).
∴以PB为边在第一象限作等腰直角三角形BPC,点C的坐标是(3,4)或(5,2)或(3,2).
考点:一次函数综合题.
23、详见解析.
【解析】
只要证明∠EAM=∠ECN,根据同位角相等两直线平行即可证明.
【详解】
证明:∵AB∥CD,
∴∠EAB=∠ECD,
∵∠1=∠2,
∴∠EAM=∠ECN,
∴AM∥CN.
【点睛】
本题考查平行线的判定和性质,解题的关键是熟练掌握平行线的性质和判定,属于中考基础题.
24、塔杆CH的高为42米
【解析】
作BE⊥DH,知GH=BE、BG=EH=4,设AH=x,则BE=GH=23+x,由CH=AHtan∠CAH=tan55°•x知CE=CH-EH=tan55°•x-4,根据BE=DE可得关于x的方程,解之可得.
【详解】
解:如图,作BE⊥DH于点E,
则GH=BE、BG=EH=4,
设AH=x,则BE=GH=GA+AH=23+x,
在Rt△ACH中,CH=AHtan∠CAH=tan55°•x,
∴CE=CH﹣EH=tan55°•x﹣4,
∵∠DBE=45°,
∴BE=DE=CE+DC,即23+x=tan55°•x﹣4+15,
解得:x≈30,
∴CH=tan55°•x=1.4×30=42,
答:塔杆CH的高为42米.
【点睛】
本题考查了解直角三角形的应用,解答本题要求学生能借助仰角构造直角三角形并解直角三角形.
25、(1)w=﹣2x2+480x﹣25600;(2)销售单价定为120元时,每天销售利润最大,最大销售利润1元(3)销售单价应定为100元
【解析】
(1)用每件的利润乘以销售量即可得到每天的销售利润,即 然后化为一般式即可;
(2)把(1)中的解析式进行配方得到顶点式然后根据二次函数的最值问题求解;
(3)求所对应的自变量的值,即解方程然后检验即可.
【详解】
(1)
w与x的函数关系式为:
(2)
∴当时,w有最大值.w最大值为1.
答:销售单价定为120元时,每天销售利润最大,最大销售利润1元.
(3)当时,
解得:
∵想卖得快,
不符合题意,应舍去.
答:销售单价应定为100元.
26、(1)=;(2)结论:AC2=AG•AH.理由见解析;(3)①△AGH的面积不变.②m的值为或2或8﹣4..
【解析】
(1)证明∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,即可推出∠AHC=∠ACG;
(2)结论:AC2=AG•AH.只要证明△AHC∽△ACG即可解决问题;
(3)①△AGH的面积不变.理由三角形的面积公式计算即可;
②分三种情形分别求解即可解决问题.
【详解】
(1)∵四边形ABCD是正方形,
∴AB=CB=CD=DA=4,∠D=∠DAB=90°∠DAC=∠BAC=43°,
∴AC=,
∵∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,
∴∠AHC=∠ACG.
故答案为=.
(2)结论:AC2=AG•AH.
理由:∵∠AHC=∠ACG,∠CAH=∠CAG=133°,
∴△AHC∽△ACG,
∴,
∴AC2=AG•AH.
(3)①△AGH的面积不变.
理由:∵S△AGH=•AH•AG=AC2=×(4)2=1.
∴△AGH的面积为1.
②如图1中,当GC=GH时,易证△AHG≌△BGC,
可得AG=BC=4,AH=BG=8,
∵BC∥AH,
∴,
∴AE=AB=.
如图2中,当CH=HG时,
易证AH=BC=4,
∵BC∥AH,
∴=1,
∴AE=BE=2.
如图3中,当CG=CH时,易证∠ECB=∠DCF=22.3.
在BC上取一点M,使得BM=BE,
∴∠BME=∠BEM=43°,
∵∠BME=∠MCE+∠MEC,
∴∠MCE=∠MEC=22.3°,
∴CM=EM,设BM=BE=m,则CM=EMm,
∴m+m=4,
∴m=4(﹣1),
∴AE=4﹣4(﹣1)=8﹣4,
综上所述,满足条件的m的值为或2或8﹣4.
【点睛】
本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.
27、(1)甲种商品的销售单价900元,乙种商品的销售单价600元;(1)至少销售甲种商品1万件.
【解析】
(1)可设甲种商品的销售单价x元,乙种商品的销售单价y元,根据等量关系:①1件甲种商品与3件乙种商品的销售收入相同,②3件甲种商品比1件乙种商品的销售收入多1500元,列出方程组求解即可;
(1)可设销售甲种商品a万件,根据甲、乙两种商品的销售总收入不低于5400万元,列出不等式求解即可.
【详解】
(1)设甲种商品的销售单价x元,乙种商品的销售单价y元,依题意有:
,解得.
答:甲种商品的销售单价900元,乙种商品的销售单价600元;
(1)设销售甲种商品a万件,依题意有:
900a+600(8﹣a)≥5400,解得:a≥1.
答:至少销售甲种商品1万件.
【点睛】
本题考查了一元一次不等式及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系.
青海省西宁市市级名校2021-2022学年中考数学对点突破模拟试卷含解析: 这是一份青海省西宁市市级名校2021-2022学年中考数学对点突破模拟试卷含解析,共16页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
2022年辽宁省鞍山市铁西区市级名校中考数学对点突破模拟试卷含解析: 这是一份2022年辽宁省鞍山市铁西区市级名校中考数学对点突破模拟试卷含解析,共24页。试卷主要包含了一次函数的图象不经过等内容,欢迎下载使用。
2021-2022学年河南省郑州市市级名校中考数学对点突破模拟试卷含解析: 这是一份2021-2022学年河南省郑州市市级名校中考数学对点突破模拟试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,定义运算等内容,欢迎下载使用。