终身会员
搜索
    上传资料 赚现金

    2021-2022学年辽宁省大石桥市实验中学十校联考最后数学试题含解析

    立即下载
    加入资料篮
    2021-2022学年辽宁省大石桥市实验中学十校联考最后数学试题含解析第1页
    2021-2022学年辽宁省大石桥市实验中学十校联考最后数学试题含解析第2页
    2021-2022学年辽宁省大石桥市实验中学十校联考最后数学试题含解析第3页
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年辽宁省大石桥市实验中学十校联考最后数学试题含解析

    展开

    这是一份2021-2022学年辽宁省大石桥市实验中学十校联考最后数学试题含解析,共18页。


    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.tan45°的值等于(  )
    A. B. C. D.1
    2.一元二次方程x2+x﹣2=0的根的情况是(  )
    A.有两个不相等的实数根 B.有两个相等的实数根
    C.只有一个实数根 D.没有实数根
    3.春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过的集中药物喷洒,再封闭宿舍,然后打开门窗进行通风,室内每立方米空气中含药量与药物在空气中的持续时间之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是( )

    A.经过集中喷洒药物,室内空气中的含药量最高达到
    B.室内空气中的含药量不低于的持续时间达到了
    C.当室内空气中的含药量不低于且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效
    D.当室内空气中的含药量低于时,对人体才是安全的,所以从室内空气中的含药量达到开始,需经过后,学生才能进入室内
    4.如图是某零件的示意图,它的俯视图是(  )

    A. B. C. D.
    5.等腰三角形一边长等于5,一边长等于10,它的周长是( )
    A.20 B.25 C.20或25 D.15
    6.如图,在矩形ABCD中,连接BD,点O是BD的中点,若点M 在AD边上,连接MO并延长交BC边于点M’,连接MB,DM’则图中的全等三角形共有( )

    A.3对 B.4对 C.5对 D.6对
    7.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )

    A.点M B.点N C.点P D.点Q
    8.已知关于x的不等式ax<b的解为x>-2,则下列关于x的不等式中,解为x<2的是( )
    A.ax+2<-b+2 B.–ax-1<b-1 C.ax>b D.
    9.如图,点E是矩形ABCD的边AD的中点,且BE⊥AC于点F,则下列结论中错误的是(  )

    A.AF=CF B.∠DCF=∠DFC
    C.图中与△AEF相似的三角形共有5个 D.tan∠CAD=
    10.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t(单位:分钟)满足的函数关系p=at2+bt+c(a,b,c是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可得到最佳加工时间为(  )

    A.4.25分钟 B.4.00分钟 C.3.75分钟 D.3.50分钟
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,在矩形ABCD中,AB=3,BC=5,在CD上任取一点E,连接BE,将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,则CE的长为_____.

    12.若a+b=5,ab=3,则a2+b2=_____.
    13.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,请根据这组数的规律写出第10个数是______.
    14.对角线互相平分且相等的四边形是(  )
    A.菱形 B.矩形 C.正方形 D.等腰梯形
    15.如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为_______米(结果保留根号).

    16.如图,△ABC中,AB=5,AC=6,将△ABC翻折,使得点A落到边BC上的点A′处,折痕分别交边AB、AC于点E,点F,如果A′F∥AB,那么BE=_____.

    三、解答题(共8题,共72分)
    17.(8分)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A,B两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得∠DAC=45°,∠DBC=65°.若AB=132米,求观景亭D到南滨河路AC的距离约为多少米?(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)

    18.(8分) “扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量(件)与销售单价(元)之间存在一次函数关系,如图所示.

    (1)求与之间的函数关系式;
    (2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?
    (3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.
    19.(8分)近日,深圳市人民政府发布了《深圳市可持续发展规划》,提出了要做可持续发展的全球创新城市的目标,某初中学校了解学生的创新意识,组织了全校学生参加创新能力大赛,从中抽取了部分学生成绩,分为5组:A组50~60;B组60~70;C组70~80;D组80~90;E组90~100,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图.抽取学生的总人数是   人,扇形C的圆心角是   °;补全频数直方图;该校共有2200名学生,若成绩在70分以下(不含70分)的学生创新意识不强,有待进一步培养,则该校创新意识不强的学生约有多少人?

    20.(8分)已知关于x的一元二次方程3x2﹣6x+1﹣k=0有实数根,k为负整数.求k的值;如果这个方程有两个整数根,求出它的根.
    21.(8分)解不等式组,并写出其所有的整数解.
    22.(10分)先化简,再求值:,其中的值从不等式组的整数解中选取.
    23.(12分)如图,▱ABCD中,点E,F分别是BC和AD边上的点,AE垂直平分BF,交BF于点P,连接EF,PD.求证:平行四边形ABEF是菱形;若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.

    24.如图,AB为⊙O直径,过⊙O外的点D作DE⊥OA于点E,射线DC切⊙O于点C、交AB的延长线于点P,连接AC交DE于点F,作CH⊥AB于点H.
    (1)求证:∠D=2∠A;
    (2)若HB=2,cosD=,请求出AC的长.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    根据特殊角三角函数值,可得答案.
    【详解】
    解:tan45°=1,
    故选D.
    【点睛】
    本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.
    2、A
    【解析】
    ∵∆=12-4×1×(-2)=9>0,
    ∴方程有两个不相等的实数根.
    故选A.
    点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.
    3、C
    【解析】
    利用图中信息一一判断即可.
    【详解】
    解: A、正确.不符合题意.
    B、由题意x=4时,y=8,∴室内空气中的含药量不低于8mg/m3的持续时间达到了11min,正确,不符合题意;
    C、y=5时,x=2.5或24,24-2.5=21.5<35,故本选项错误,符合题意;
    D、正确.不符合题意,
    故选C.
    【点睛】
    本题考查反比例函数的应用、一次函数的应用等知识,解题的关键是读懂图象信息,属于中考常考题型.
    4、C
    【解析】
    物体的俯视图,即是从上面看物体得到的结果;根据三视图的定义,从上面看物体可以看到是一个正六边形,里面是一个没有圆心的圆,由此可以确定答案.
    【详解】
    从上面看是一个正六边形,里面是一个没有圆心的圆.
    故答案选C.
    【点睛】
    本题考查了几何体的三视图,解题的关键是熟练的掌握几何体三视图的定义.
    5、B
    【解析】
    题目中没有明确腰和底,故要分情况讨论,再结合三角形的三边关系分析即可.
    【详解】
    当5为腰时,三边长为5、5、10,而,此时无法构成三角形;
    当5为底时,三边长为5、10、10,此时可以构成三角形,它的周长
    故选B.
    6、D
    【解析】
    根据矩形的对边平行且相等及其对称性,即可写出图中的全等三角形的对数.
    【详解】
    图中图中的全等三角形有△ABM≌△CDM’,△ABD≌△CDB, △OBM≌△ODM’,
    △OBM’≌△ODM, △M’BM≌△MDM’, △DBM≌△BDM’,故选D.
    【点睛】
    此题主要考查矩形的性质及全等三角形的判定,解题的关键是熟知矩形的对称性.
    7、C
    【解析】
    试题分析:∵点M,N表示的有理数互为相反数,∴原点的位置大约在O点,∴绝对值最小的数的点是P点,故选C.

    考点:有理数大小比较.
    8、B
    【解析】
    ∵关于x的不等式ax<b的解为x>-2,
    ∴a<0,且,即,
    ∴(1)解不等式ax+2<-b+2可得:ax<-b,,即x>2;
    (2)解不等式–ax-1<b-1可得:-ax (3)解不等式ax>b可得:,即x<-2;
    (4)解不等式可得:,即;
    ∴解集为x<2的是B选项中的不等式.
    故选B.
    9、D
    【解析】
    由 又AD∥BC,所以 故A正确,不符合题意;过D作DM∥BE交AC于N,得到四边形BMDE是平行四边形,求出BM=DE=
    BC,得到CN=NF,根据线段的垂直平分线的性质可得结论,故B正确,不符合题意;
    根据相似三角形的判定即可求解,故C正确,不符合题意;
    由△BAE∽△ADC,得到CD与AD的大小关系,根据正切函数可求tan∠CAD的值,故D错误,符合题意.
    【详解】
    A.∵AD∥BC,

    ∴△AEF∽△CBF,


    ∴,故A正确,不符合题意;
    B. 过D作DM∥BE交AC于N,
    ∵DE∥BM,BE∥DM,
    ∴四边形BMDE是平行四边形,

    ∴BM=CM,
    ∴CN=NF,
    ∵BE⊥AC于点F,DM∥BE,
    ∴DN⊥CF,
    ∴DF=DC,
    ∴∠DCF=∠DFC,故B正确,不符合题意;
    C. 图中与△AEF相似的三角形有△ACD,△BAF,△CBF,△CAB,△ABE共有5个,故C正确,不符合题意;
    D. 设AD=a,AB=b,由△BAE∽△ADC,有
    ∵tan∠CAD 故D错误,符合题意.
    故选:D.
    【点睛】
    考查相似三角形的判定,矩形的性质,解直角三角形,掌握相似三角形的判定方法是解题的关键.
    10、C
    【解析】
    根据题目数据求出函数解析式,根据二次函数的性质可得.
    【详解】
    根据题意,将(3,0.7)、(4,0.8)、(5,0.5)代入p=at2+bt+c,
    得:
    解得:a=−0.2,b=1.5,c=−2,
    即p=−0.2t2+1.5t−2,
    当t=−=3.75时,p取得最大值,
    故选C.
    【点睛】
    本题考查了二次函数的应用,熟练掌握性质是解题的关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    设CE=x,由矩形的性质得出AD=BC=5,CD=AB=3,∠A=∠D=90°.由折叠的性质得出BF=BC=5,EF=CE=x,DE=CD-CE=3-x.在Rt△ABF中利用勾股定理求出AF的长度,进而求出DF的长度;然后在Rt△DEF根据勾股定理列出关于x的方程即可解决问题.
    【详解】
    设CE=x.
    ∵四边形ABCD是矩形,
    ∴AD=BC=5,CD=AB=3,∠A=∠D=90°.
    ∵将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,
    ∴BF=BC=5,EF=CE=x,DE=CD-CE=3-x.
    在Rt△ABF中,由勾股定理得:
    AF2=52-32=16,
    ∴AF=4,DF=5-4=1.
    在Rt△DEF中,由勾股定理得:
    EF2=DE2+DF2,
    即x2=(3-x)2+12,
    解得:x=,
    故答案为.
    12、1
    【解析】
    试题分析:首先把等式a+b=5的等号两边分别平方,即得a2+2ab+b2=25,然后根据题意即可得解.
    解:∵a+b=5,
    ∴a2+2ab+b2=25,
    ∵ab=3,
    ∴a2+b2=1.
    故答案为1.
    考点:完全平方公式.
    13、1
    【解析】
    解:3=2+1;
    5=3+2;
    8=5+3;
    13=8+5;

    可以发现:从第三个数起,每一个数都等于它前面两个数的和.
    则第8个数为13+8=21;
    第9个数为21+13=34;
    第10个数为34+21=1.
    故答案为1.
    点睛:此题考查了数字的有规律变化,解答此类题目的关键是要求学生通对题目中给出的图表、数据等认真进行分析、归纳并发现其中的规律,并应用规律解决问题.此类题目难度一般偏大.
    14、B
    【解析】
    根据平行四边形的判定与矩形的判定定理,即可求得答案.
    【详解】
    ∵对角线互相平分的四边形是平行四边形,对角线相等的平行四边形是矩形,
    ∴对角线相等且互相平分的四边形一定是矩形.
    故选B.
    【点睛】
    此题考查了平行四边形,矩形,菱形以及等腰梯形的判定定理.此题比较简单,解题的关键是熟记定理.
    15、一4
    【解析】
    分析:利用特殊三角函数值,解直角三角形,AM=MD,再用正切函数,利用MB求CM,作差可求DC.
    【详解】
    因为∠MAD=45°, AM=4,所以MD=4,
    因为AB=8,所以MB=12,
    因为∠MBC=30°,所以CM=MBtan30°=4.
    所以CD=4-4.
    【点睛】
    本题考查了解直角三角形的应用,熟练掌握三角函数的相关定义以及变形是解题的关键.
    16、
    【解析】
    设BE=x,则AE=5﹣x=AF=A'F,CF=6﹣(5﹣x)=1+x,依据△A'CF∽△BCA,可得,即=,进而得到BE=.
    【详解】
    解:如图,

    由折叠可得,∠AFE=∠A'FE,
    ∵A'F∥AB,
    ∴∠AEF=∠A'FE,
    ∴∠AEF=∠AFE,
    ∴AE=AF,
    由折叠可得,AF=A'F,
    设BE=x,则AE=5﹣x=AF=A'F,CF=6﹣(5﹣x)=1+x,
    ∵A'F∥AB,
    ∴△A'CF∽△BCA,
    ∴,即=,
    解得x=,
    ∴BE=,
    故答案为:.
    【点睛】
    本题主要考查了折叠问题以及相似三角形的判定与性质的运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,对应边和对应角相等.

    三、解答题(共8题,共72分)
    17、观景亭D到南滨河路AC的距离约为248米.
    【解析】
    过点D作DE⊥AC,垂足为E,设BE=x,根据AE=DE,列出方程即可解决问题.
    【详解】
    过点D作DE⊥AC,垂足为E,设BE=x,
    在Rt△DEB中,tan∠DBE=,
    ∵∠DBC=65°,
    ∴DE=xtan65°.
    又∵∠DAC=45°,
    ∴AE=DE.
    ∴132+x=xtan65°,
    ∴解得x≈115.8,
    ∴DE≈248(米).
    ∴观景亭D到南滨河路AC的距离约为248米.

    18、(1);(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.
    【解析】
    (1)可用待定系数法来确定y与x之间的函数关系式;
    (2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;
    (3)首先得出w与x的函数关系式,进而利用所获利润等于3600元时,对应x的值,根据增减性,求出x的取值范围.
    【详解】
    (1)由题意得: .
    故y与x之间的函数关系式为:y=-10x+700,
    (2)由题意,得
    -10x+700≥240,
    解得x≤46,
    设利润为w=(x-30)•y=(x-30)(-10x+700),

    w=-10x2+1000x-21000=-10(x-50)2+4000,
    ∵-10<0,
    ∴x<50时,w随x的增大而增大,
    ∴x=46时,w大=-10(46-50)2+4000=3840,
    答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;
    (3)w-150=-10x2+1000x-21000-150=3600,
    -10(x-50)2=-250,
    x-50=±5,
    x1=55,x2=45,
    如图所示,由图象得:
    当45≤x≤55时,捐款后每天剩余利润不低于3600元.
    【点睛】
    此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.
    19、(1)300、144;(2)补全频数分布直方图见解析;(3)该校创新意识不强的学生约有528人.
    【解析】
    (1)由D组频数及其所占比例可得总人数,用360°乘以C组人数所占比例可得;
    (2)用总人数分别乘以A、B组的百分比求得其人数,再用总人数减去A、B、C、D的人数求得E组的人数可得;
    (3)用总人数乘以样本中A、B组的百分比之和可得.
    【详解】
    解:(1)抽取学生的总人数为78÷26%=300人,扇形C的圆心角是360°×=144°,
    故答案为300、144;
    (2)A组人数为300×7%=21人,B组人数为300×17%=51人,
    则E组人数为300﹣(21+51+120+78)=30人,
    补全频数分布直方图如下:

    (3)该校创新意识不强的学生约有2200×(7%+17%)=528人.
    【点睛】
    考查了频数(率)分布直方图:提高读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了用样本估计总体.
    20、(2)k=﹣2,﹣2.(2)方程的根为x2=x2=2.
    【解析】
    (2)根据方程有实数根,得到根的判别式的值大于等于0列出关于k的不等式,求出不等式的解集即可得到k的值;
    (2)将k的值代入原方程,求出方程的根,经检验即可得到满足题意的k的值.
    【详解】
    解:(2)根据题意,得△=(﹣6)2﹣4×3(2﹣k)≥0,
    解得 k≥﹣2.
    ∵k为负整数,
    ∴k=﹣2,﹣2.
    (2)当k=﹣2时,不符合题意,舍去;
    当k=﹣2时,符合题意,此时方程的根为x2=x2=2.
    【点睛】
    本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:(2)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根.也考查了一元二次方程的解法.
    21、不等式组的解集为1≤x<2,该不等式组的整数解为1,2,1.
    【解析】
    先求出不等式组的解集,即可求得该不等式组的整数解.
    【详解】

    由①得,x≥1,
    由②得,x<2.
    所以不等式组的解集为1≤x<2,
    该不等式组的整数解为1,2,1.
    【点睛】
    本题考查的是解一元一次不等式组及求一元一次不等式组的整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
    22、-2.
    【解析】
    试题分析:先算括号里面的,再算除法,解不等式组,求出x的取值范围,选出合适的x的值代入求值即可.
    试题解析:原式=
    ==
    解得-1≤x<,
    ∴不等式组的整数解为-1,0,1,2
    若分式有意义,只能取x=2,
    ∴原式=-=-2
    【点睛】本题考查的是分式的化简求值,分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.
    23、(1)详见解析;(2)tan∠ADP=.
    【解析】
    (1)根据线段垂直平分线的性质和平行四边形的性质即可得到结论;
    (2)作PH⊥AD于H,根据四边形ABEF是菱形,∠ABC=60°,AB=4,得到AB=AF=4,∠ABF=∠ADB=30°,AP⊥BF,从而得到PH=,DH=5,然后利用锐角三角函数的定义求解即可.
    【详解】
    (1)证明:∵AE垂直平分BF,
    ∴AB=AF,
    ∴∠BAE=∠FAE,
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC.
    ∴∠FAE=∠AEB,
    ∴∠AEB=∠BAE,
    ∴AB=BE,
    ∴AF=BE.
    ∵AF∥BC,
    ∴四边形ABEF是平行四边形.
    ∵AB=BE,
    ∴四边形ABEF是菱形;
    (2)解:作PH⊥AD于H,
    ∵四边形ABEF是菱形,∠ABC=60°,AB=4,
    ∴AB=AF=4,∠ABF=∠AFB=30°,AP⊥BF,
    ∴AP=AB=2,
    ∴PH=,DH=5,
    ∴tan∠ADP==.

    【点睛】
    本题考查了菱形的判定及平行四边形的性质,解题的关键是牢记菱形的几个判定定理,难度不大.
    24、(1)证明见解析;(2)AC=4.
    【解析】
    (1)连接,根据切线的性质得到,根据垂直的定义得到,得到,然后根据圆周角定理证明即可;
    (2)设的半径为,根据余弦的定义、勾股定理计算即可.
    【详解】
    (1)连接.
    ∵射线切于点,.
    ,,,,,由圆周角定理得:,;
    (2)由(1)可知:,,,,,设的半径为,则,在中,,,,∴由勾股定理可知:,.
    在中,,由勾股定理可知:.

    【点睛】
    本题考查了切线的性质、圆周角定理以及解直角三角形,掌握切线的性质定理、圆周角定理、余弦的定义是解题的关键.

    相关试卷

    江苏省泰州市高港实验校2021-2022学年十校联考最后数学试题含解析:

    这是一份江苏省泰州市高港实验校2021-2022学年十校联考最后数学试题含解析,共15页。试卷主要包含了考生必须保证答题卡的整洁,下列运算正确的是,下列计算正确的是,一、单选题等内容,欢迎下载使用。

    河南郑州中学原区郑州中学原实验校2021-2022学年十校联考最后数学试题含解析:

    这是一份河南郑州中学原区郑州中学原实验校2021-2022学年十校联考最后数学试题含解析,共20页。试卷主要包含了下列命题是真命题的是,已知等内容,欢迎下载使用。

    广东省汕头市龙湖实验中学2021-2022学年十校联考最后数学试题含解析:

    这是一份广东省汕头市龙湖实验中学2021-2022学年十校联考最后数学试题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map