


2021-2022学年青海省西宁市海湖中学中考适应性考试数学试题含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.下列事件中,必然事件是( )
A.若ab=0,则a=0
B.若|a|=4,则a=±4
C.一个多边形的内角和为1000°
D.若两直线被第三条直线所截,则同位角相等
2.的相反数是( )
A. B.- C. D.-
3.两个有理数的和为零,则这两个数一定是( )
A.都是零 B.至少有一个是零
C.一个是正数,一个是负数 D.互为相反数
4.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是( )
A.16cm B.18cm C.20cm D.21cm
5.随着我国综合国力的提升,中华文化影响日益增强,学中文的外国人越来越多,中文已成为美国居民的第二外语,美国常讲中文的人口约有210万,请将“210万”用科学记数法表示为( )
A. B. C. D.
6.若点A(1,a)和点B(4,b)在直线y=-2x+m上,则a与b的大小关系是( )
A.a>b B.a<b
C.a=b D.与m的值有关
7.如图,是的外接圆,已知,则的大小为
A. B. C. D.
8.由6个大小相同的正方体搭成的几何体如图所示,比较它的正视图、左视图和俯视图的面积,则( )
A.三个视图的面积一样大 B.主视图的面积最小
C.左视图的面积最小 D.俯视图的面积最小
9.下列各数中是有理数的是( )
A.π B.0 C. D.
10.-10-4的结果是( )
A.-7 B.7 C.-14 D.13
二、填空题(共7小题,每小题3分,满分21分)
11.化简÷=_____.
12.如图,在平面直角坐标系中有一正方形AOBC,反比例函数经过正方形AOBC对角线的交点,半径为()的圆内切于△ABC,则k的值为________.
13.如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是__________.
14.分解因式:4ax2-ay2=________________.
15.使有意义的x的取值范围是______.
16.若x,y为实数,y=,则4y﹣3x的平方根是____.
17.若正多边形的一个内角等于140°,则这个正多边形的边数是_______.
三、解答题(共7小题,满分69分)
18.(10分)地下停车场的设计大大缓解了住宅小区停车难的问题,如图是龙泉某小区的地下停车库坡道入口的设计示意图,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5m.根据规定,地下停车库坡道入口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入.小刚认为CD的长就是所限制的高度,而小亮认为应该以CE的长作为限制的高度.小刚和小亮谁说得对?请你判断并计算出正确的限制高度.(结果精确到0.1m,参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.325)
19.(5分)小明和小亮玩一个游戏:取三张大小、质地都相同的卡片,上面分别标有数字2、3、4(背面完全相同),现将标有数字的一面朝下.小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和.请你用画树状图或列表的方法,求出这两数和为6的概率.如果和为奇数,则小明胜;若和为偶数,则小亮胜.你认为这个游戏规则对双方公平吗?做出判断,并说明理由.
20.(8分)如图,点G是正方形ABCD对角线CA的延长线一点,对角线BD与AC交于点O,以线段AG为边作一个正方形AEFG,连接EB、GD.
(1)求证:EB=GD;
(2)若AB=5,AG=2,求EB的长.
21.(10分)先化简,再求值:﹣÷,其中a=1.
22.(10分)计算:解方程:
23.(12分)如图所示,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分线AE交BC于点E,连接DE.
(1)求证:四边形ABED是菱形;
(2)若∠ABC=60°,CE=2BE,试判断△CDE的形状,并说明理由.
24.(14分)已知P是的直径BA延长线上的一个动点,∠P的另一边交于点C、D,两点位于AB的上方,=6,OP=m,,如图所示.另一个半径为6的经过点C、D,圆心距.
(1)当m=6时,求线段CD的长;
(2)设圆心O1在直线上方,试用n的代数式表示m;
(3)△POO1在点P的运动过程中,是否能成为以OO1为腰的等腰三角形,如果能,试求出此时n的值;如果不能,请说明理由.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
直接利用绝对值的性质以及多边形的性质和平行线的性质分别分析得出答案.
【详解】
解:A、若ab=0,则a=0,是随机事件,故此选项错误;
B、若|a|=4,则a=±4,是必然事件,故此选项正确;
C、一个多边形的内角和为1000°,是不可能事件,故此选项错误;
D、若两直线被第三条直线所截,则同位角相等,是随机事件,故此选项错误;
故选:B.
【点睛】
此题主要考查了事件的判别,正确把握各命题的正确性是解题关键.
2、B
【解析】
∵+(﹣)=0,
∴的相反数是﹣.
故选B.
3、D
【解析】
解:互为相反数的两个有理数的和为零,故选D.A、C不全面.B、不正确.
4、C
【解析】
试题分析:已知,△ABE向右平移2cm得到△DCF,根据平移的性质得到EF=AD=2cm,AE=DF,又因△ABE的周长为16cm,所以AB+BC+AC=16cm,则四边形ABFD的周长=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm.故答案选C.
考点:平移的性质.
5、B
【解析】
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】210万=2100000,
2100000=2.1×106,
故选B.
【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
6、A
【解析】
【分析】根据一次函数性质:中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.由-2<0得,当x12时,y1>y2.
【详解】因为,点A(1,a)和点B(4,b)在直线y=-2x+m上,-2<0,
所以,y随x的增大而减小.
因为,1<4,
所以,a>b.
故选A
【点睛】本题考核知识点:一次函数性质. 解题关键点:判断一次函数中y与x的大小关系,关键看k的符号.
7、A
【解析】
解:△AOB中,OA=OB,∠ABO=30°;
∴∠AOB=180°-2∠ABO=120°;
∴∠ACB=∠AOB=60°;故选A.
8、C
【解析】
试题分析:根据三视图的意义,可知正视图由5个面,左视图有3个面,俯视图有4个面,故可知主视图的面积最大.
故选C
考点:三视图
9、B
【解析】
【分析】根据有理数是有限小数或无限循环小数,结合无理数的定义进行判断即可得答案.
【详解】A、π是无限不循环小数,属于无理数,故本选项错误;
B、0是有理数,故本选项正确;
C、是无理数,故本选项错误;
D、是无理数,故本选项错误,
故选B.
【点睛】本题考查了实数的分类,熟知有理数是有限小数或无限循环小数是解题的关键.
10、C
【解析】
解:-10-4=-1.故选C.
二、填空题(共7小题,每小题3分,满分21分)
11、x+1
【解析】
分析:根据根式的除法,先因式分解后,把除法化为乘法,再约分即可.
详解:解:原式=÷
=•(x+1)(x﹣1)
=x+1,
故答案为x+1.
点睛:此题主要考查了分式的运算,关键是要把除法问题转化为乘法运算即可,注意分子分母的因式分解.
12、1
【解析】
试题解析:设正方形对角线交点为D,过点D作DM⊥AO于点M,DN⊥BO于点N;
设圆心为Q,切点为H、E,连接QH、QE.
∵在正方形AOBC中,反比例函数y=经过正方形AOBC对角线的交点,
∴AD=BD=DO=CD,NO=DN,HQ=QE,HC=CE,
QH⊥AC,QE⊥BC,∠ACB=90°,
∴四边形HQEC是正方形,
∵半径为(1-2)的圆内切于△ABC,
∴DO=CD,
∵HQ2+HC2=QC2,
∴2HQ2=QC2=2×(1-2)2,
∴QC2=18-32=(1-1)2,
∴QC=1-1,
∴CD=1-1+(1-2)=2,
∴DO=2,
∵NO2+DN2=DO2=(2)2=8,
∴2NO2=8,
∴NO2=1,
∴DN×NO=1,
即:xy=k=1.
【点睛】此题主要考查了正方形的性质以及三角形内切圆的性质以及待定系数法求反比例函数解析式,根据已知求出CD的长度,进而得出DN×NO=1是解决问题的关键.
13、
【解析】
根据题意可得阴影部分的面积等于△ABC的面积,因为△ABC的面积是菱形面积的一半,根据已知可求得菱形的面积则不难求得阴影部分的面积.
【详解】
设AP,EF交于O点,
∵四边形ABCD为菱形,
∴BC∥AD,AB∥CD.
∵PE∥BC,PF∥CD,
∴PE∥AF,PF∥AE.
∴四边形AEFP是平行四边形.
∴S△POF=S△AOE.
即阴影部分的面积等于△ABC的面积.
∵△ABC的面积等于菱形ABCD的面积的一半,
菱形ABCD的面积=ACBD=5,
∴图中阴影部分的面积为5÷2=.
14、a(2x+y)(2x-y)
【解析】
首先提取公因式a,再利用平方差进行分解即可.
【详解】
原式=a(4x2-y2)
=a(2x+y)(2x-y),
故答案为a(2x+y)(2x-y).
【点睛】
本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
15、
【解析】
二次根式有意义的条件.
【分析】根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.
16、±
【解析】
∵与同时成立,
∴ 故只有x2﹣4=0,即x=±2,
又∵x﹣2≠0,
∴x=﹣2,y==﹣,
4y﹣3x=﹣1﹣(﹣6)=5,
∴4y﹣3x的平方根是±.
故答案:±.
17、1
【解析】
试题分析:此题主要考查了多边形的外角与内角,做此类题目,首先求出正多边形的外角度数,再利用外角和定理求出求边数.首先根据求出外角度数,再利用外角和定理求出边数.
∵正多边形的一个内角是140°,
∴它的外角是:180°-140°=40°,
360°÷40°=1.
故答案为1.
考点:多边形内角与外角.
三、解答题(共7小题,满分69分)
18、小亮说的对,CE为2.6m.
【解析】
先根据CE⊥AE,判断出CE为高,再根据解直角三角形的知识解答.
【详解】
解:在△ABD中,∠ABD=90°,∠BAD=18°,BA=10m,
∵tan∠BAD=,
∴BD=10×tan18°,
∴CD=BD﹣BC=10×tan18°﹣0.5≈2.7(m),
在△ABD中,∠CDE=90°﹣∠BAD=72°,
∵CE⊥ED,
∴sin∠CDE=,
∴CE=sin∠CDE×CD=sin72°×2.7≈2.6(m),
∵2.6m<2.7m,且CE⊥AE,
∴小亮说的对.
答:小亮说的对,CE为2.6m.
【点睛】
本题主要考查了解直角三角形的应用,主要是正弦、正切概念及运算,解决本题的关键把实际问题转化为数学问题.
19、 (1)列表见解析;(2)这个游戏规则对双方不公平.
【解析】
(1)首先根据题意列表,然后根据表求得所有等可能的结果与两数和为6的情况,再利用概率公式求解即可;
(2)分别求出和为奇数、和为偶数的概率,即可得出游戏的公平性.
【详解】
(1)列表如下:
由表可知,总共有9种结果,其中和为6的有3种,则这两数和为6的概率;
(2)这个游戏规则对双方不公平.理由如下:
因为P(和为奇数),P(和为偶数),而,所以这个游戏规则对双方是不公平的.
【点睛】
本题考查了列表法求概率.注意树状图与列表法可以不重不漏的表示出所有等可能的情况.用到的知识点为:概率=所求情况数与总情况数之比.
20、(1)证明见解析;(2) ;
【解析】
(1)根据正方形的性质得到∠GAD=∠EAB,证明△GAD≌△EAB,根据全等三角形的性质证明;(2)根据正方形的性质得到BD⊥AC,AC=BD=5,根据勾股定理计算即可.
【详解】
(1)在△GAD和△EAB中,∠GAD=90°+∠EAD,∠EAB=90°+∠EAD,
∴∠GAD=∠EAB,
在△GAD和△EAB中,,
∴△GAD≌△EAB,
∴EB=GD;
(2)∵四边形ABCD是正方形,AB=5,
∴BD⊥AC,AC=BD=5,
∴∠DOG=90°,OA=OD=BD=,
∵AG=2 ,
∴OG=OA+AG=,
由勾股定理得,GD==,
∴EB=.
【点睛】
本题考查的是正方形的性质、全等三角形的判定和性质,掌握正方形的对角线相等、垂直且互相平分是解题的关键.
21、-1
【解析】
原式第二项利用除法法则变形,约分后通分,并利用同分母分式的减法法则计算,约分得到最简结果,把a的值代入计算即可求出值.
【详解】
解:原式=﹣•2(a﹣3)
=﹣==,
当a=1时,原式==﹣1.
【点睛】
此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
22、 (1)10;(2)原方程无解.
【解析】
(1)原式利用二次根式性质,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值;
(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【详解】
(1)原式==10;
(2)去分母得:3(5x﹣4)+3x﹣6=4x+10,
解得:x=2,
经检验:x=2是增根,原方程无解.
【点睛】
此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
23、见解析
【解析】
试题分析:(1)先证得四边形ABED是平行四边形,又AB=AD, 邻边相等的平行四边形是菱形;
(2)四边形ABED是菱形,∠ABC=60°,所以∠DEC=60°,AB=ED,又EC=2BE,EC=2DE,可得△DEC是直角三角形.
试题解析:梯形ABCD中,AD∥BC,
∴四边形ABED是平行四边形,
又AB=AD,
∴四边形ABED是菱形;
(2)∵四边形ABED是菱形,∠ABC=60°,
∴∠DEC=60°,AB=ED,
又EC=2BE,
∴EC=2DE,
∴△DEC是直角三角形,
考点:1.菱形的判定;2.直角三角形的性质;3.平行四边形的判定
24、 (1)CD=;(2)m= ;(3) n的值为或
【解析】
分析:(1)过点作⊥,垂足为点,连接.解Rt△,得到的长.由勾股定理得的长,再由垂径定理即可得到结论;
(2)解Rt△,得到和Rt△中,由勾股定理即可得到结论;
(3)△成为等腰三角形可分以下几种情况讨论:① 当圆心、在弦异侧时,分和.②当圆心、在弦同侧时,同理可得结论.
详解:(1)过点作⊥,垂足为点,连接.
在Rt△,∴.
∵=6,∴.
由勾股定理得: .
∵⊥,∴.
(2)在Rt△,∴.
在Rt△中,.
在Rt△中,.
可得: ,解得.
(3)△成为等腰三角形可分以下几种情况:
① 当圆心、在弦异侧时
i),即,由,解得.
即圆心距等于、的半径的和,就有、外切不合题意舍去.
ii),由 ,
解得:,即 ,解得.
②当圆心、在弦同侧时,同理可得: .
∵是钝角,∴只能是,即,解得.
综上所述:n的值为或.
点睛:本题是圆的综合题.考查了圆的有关性质和两圆的位置关系以及解直径三角形.解答(3)的关键是要分类讨论.
青海省西宁市海湖中学2024届九年级下学期开学考试数学试卷(含解析): 这是一份青海省西宁市海湖中学2024届九年级下学期开学考试数学试卷(含解析),共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
青海省西宁市海湖中学2023-2024学年九年级上学期开学考试数学试题(图片版含答案): 这是一份青海省西宁市海湖中学2023-2024学年九年级上学期开学考试数学试题(图片版含答案),文件包含青海省西宁市海湖中学2023-2024学年九年级上学期开学考试数学试题pdf、九年级数学开学考试答案pdf等2份试卷配套教学资源,其中试卷共3页, 欢迎下载使用。
青海省西宁市海湖中学2023-2024学年八年级上学期开学考试数学试题(含答案): 这是一份青海省西宁市海湖中学2023-2024学年八年级上学期开学考试数学试题(含答案),文件包含青海省西宁市海湖中学2023-2024学年八年级上学期开学考试数学试题docx、八年级开学考试答案docx等2份试卷配套教学资源,其中试卷共5页, 欢迎下载使用。