2021-2022学年内蒙古巴彦淖尔市毕业升学考试模拟卷数学卷含解析
展开这是一份2021-2022学年内蒙古巴彦淖尔市毕业升学考试模拟卷数学卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.估计的值在( )
A.0到l之间 B.1到2之间 C.2到3之间 D.3到4之间
2.如图,在中,点D、E、F分别在边、、上,且,.下列四种说法: ①四边形是平行四边形;②如果,那么四边形是矩形;③如果平分,那么四边形是菱形;④如果且,那么四边形是菱形. 其中,正确的有( ) 个
A.1 B.2 C.3 D.4
3.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是( )
A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”
B.从一副扑克牌中任意抽取一张,这张牌是“红色的”
C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”
D.掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6
4.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=( )
A.52° B.38° C.42° D.60°
5.如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是( )
A. B.
C. D.
6.把8a3﹣8a2+2a进行因式分解,结果正确的是( )
A.2a(4a2﹣4a+1) B.8a2(a﹣1) C.2a(2a﹣1)2 D.2a(2a+1)2
7.如图是某个几何体的展开图,该几何体是( )
A.三棱柱 B.圆锥 C.四棱柱 D.圆柱
8.一个圆锥的底面半径为,母线长为6,则此圆锥的侧面展开图的圆心角是( )
A.180° B.150° C.120° D.90°
9.正方形ABCD在直角坐标系中的位置如图所示,将正方形ABCD绕点A按顺时针方向旋转180°后,C点的坐标是( )
A.(2,0) B.(3,0) C.(2,-1) D.(2,1)
10.小昱和阿帆均从同一本书的第1页开始,逐页依顺序在每一页上写一个数.小昱在第1页写1,且之后每一页写的数均为他在前一页写的数加2;阿帆在第1页写1,且之后每一页写的数均为他在前一页写的数加1.若小昱在某页写的数为101,则阿帆在该页写的数为何?( )
A.350 B.351 C.356 D.358
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是_____________.
12.__.
13.已知:如图,△ABC的面积为12,点D、E分别是边AB、AC的中点,则四边形BCED的面积为_____.
14.-3的倒数是___________
15.将6本相同厚度的书叠起来,它们的高度是9厘米.如果将这样相同厚度的书叠起来的高度是42厘米,那么这些书有_____本.
16.如图,已知,D、E分别是边BA、CA延长线上的点,且如果,,那么AE的长为______.
三、解答题(共8题,共72分)
17.(8分)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点.求反比例函数和一次函数的解析式;求直线AB与x轴的交点C的坐标及△AOB的面积;直接写出一次函数的值小于反比例函数值的x的取值范围.
18.(8分)(1)计算:﹣22+|﹣4|+()-1+2tan60°
(2) 求 不 等 式 组的 解 集 .
19.(8分)在平面直角坐标系中,已知抛物线经过A(﹣4,0),B(0,﹣4),C(2,0)三点.
(1)求抛物线解析式;
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△MOA的面积为S.求S关于m的函数关系式,并求出当m为何值时,S有最大值,这个最大值是多少?
(3)若点Q是直线y=﹣x上的动点,过Q做y轴的平行线交抛物线于点P,判断有几个Q能使以点P,Q,B,O为顶点的四边形是平行四边形的点,直接写出相应的点Q的坐标.
20.(8分)某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:
A超市:所有商品均打九折(按标价的90%)销售;
B超市:买一副羽毛球拍送2个羽毛球.
设在A超市购买羽毛球拍和羽毛球的费用为yA(元),在B超市购买羽毛球拍和羽毛球的费用为yB(元).请解答下列问题:分别写出yA、yB与x之间的关系式;若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.
21.(8分) “端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).
请根据以上信息回答:
(1)本次参加抽样调查的居民有多少人?
(2)将两幅不完整的图补充完整;
(3)若居民区有8000人,请估计爱吃D粽的人数;
(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.
22.(10分)如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.求证:四边形ACDF是平行四边形;当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.
23.(12分)“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:
请结合图表完成下列各题:
(1)①表中a的值为 ,中位数在第 组;
②频数分布直方图补充完整;
(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?
(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.
组别
成绩x分
频数(人数)
第1组
50≤x<60
6
第2组
60≤x<70
8
第3组
70≤x<80
14
第4组
80≤x<90
a
第5组
90≤x<100
10
24.(感知)如图①,四边形ABCD、CEFG均为正方形.可知BE=DG.
(拓展)如图②,四边形ABCD、CEFG均为菱形,且∠A=∠F.求证:BE=DG.
(应用)如图③,四边形ABCD、CEFG均为菱形,点E在边AD上,点G在AD延长线上.若AE=2ED,∠A=∠F,△EBC的面积为8,菱形CEFG的面积是_______.(只填结果)
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
∵9<11<16,
∴,
∴
故选B.
2、D
【解析】
先由两组对边分别平行的四边形为平行四边形,根据DE∥CA,DF∥BA,得出AEDF为平行四边形,得出①正确;当∠BAC=90°,根据推出的平行四边形AEDF,利用有一个角为直角的平行四边形为矩形可得出②正确;若AD平分∠BAC,得到一对角相等,再根据两直线平行内错角相等又得到一对角相等,等量代换可得∠EAD=∠EDA,利用等角对等边可得一组邻边相等,根据邻边相等的平行四边形为菱形可得出③正确;由AB=AC,AD⊥BC,根据等腰三角形的三线合一可得AD平分∠BAC,同理可得四边形AEDF是菱形,④正确,进而得到正确说法的个数.
【详解】
解:∵DE∥CA,DF∥BA,
∴四边形AEDF是平行四边形,选项①正确;
若∠BAC=90°,
∴平行四边形AEDF为矩形,选项②正确;
若AD平分∠BAC,
∴∠EAD=∠FAD,
又DE∥CA,∴∠EDA=∠FAD,
∴∠EAD=∠EDA,
∴AE=DE,
∴平行四边形AEDF为菱形,选项③正确;
若AB=AC,AD⊥BC,
∴AD平分∠BAC,
同理可得平行四边形AEDF为菱形,选项④正确,
则其中正确的个数有4个.
故选D.
【点睛】
此题考查了平行四边形的定义,菱形、矩形的判定,涉及的知识有:平行线的性质,角平分线的定义,以及等腰三角形的判定与性质,熟练掌握平行四边形、矩形及菱形的判定与性质是解本题的关键.
3、D
【解析】
根据统计图可知,试验结果在0.16附近波动,即其概率P≈0.16,计算四个选项的概率,约为0.16者即为正确答案.
【详解】
根据图中信息,某种结果出现的频率约为0.16,
在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”的概率为≈0.67>0.16,故A选项不符合题意,
从一副扑克牌中任意抽取一张,这张牌是“红色的”概率为≈0.48>0.16,故B选项不符合题意,
掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率是=0.5>0.16,故C选项不符合题意,
掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率是≈0.16,故D选项符合题意,
故选D.
【点睛】
本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.熟练掌握概率公式是解题关键.
4、A
【解析】
试题分析:如图:∵∠3=∠2=38°°(两直线平行同位角相等),∴∠1=90°﹣∠3=52°,故选A.
考点:平行线的性质.
5、C
【解析】
根据全等三角形的判定定理进行判断.
【详解】
解:A、由全等三角形的判定定理SAS证得图中两个小三角形全等,
故本选项不符合题意;
B、由全等三角形的判定定理SAS证得图中两个小三角形全等,
故本选项不符合题意;
C、
如图1,∵∠DEC=∠B+∠BDE,
∴x°+∠FEC=x°+∠BDE,
∴∠FEC=∠BDE,
所以其对应边应该是BE和CF,而已知给的是BD=FC=3,
所以不能判定两个小三角形全等,故本选项符合题意;
D、
如图2,∵∠DEC=∠B+∠BDE,
∴x°+∠FEC=x°+∠BDE,
∴∠FEC=∠BDE,
∵BD=EC=2,∠B=∠C,
∴△BDE≌△CEF,
所以能判定两个小三角形全等,故本选项不符合题意;
由于本题选择可能得不到全等三角形纸片的图形,
故选C.
【点睛】
本题考查了全等三角形的判定,注意三角形边和角的对应关系是关键.
6、C
【解析】
首先提取公因式2a,进而利用完全平方公式分解因式即可.
【详解】
解:8a3﹣8a2+2a
=2a(4a2﹣4a+1)
=2a(2a﹣1)2,故选C.
【点睛】
本题因式分解中提公因式法与公式法的综合运用.
7、A
【解析】
侧面为三个长方形,底边为三角形,故原几何体为三棱柱.
【详解】
解:观察图形可知,这个几何体是三棱柱.
故选A.
【点睛】
本题考查的是三棱柱的展开图,对三棱柱有充分的理解是解题的关键..
8、B
【解析】
解:,解得n=150°.故选B.
考点:弧长的计算.
9、B
【解析】
试题分析:正方形ABCD绕点A顺时针方向旋转180°后,C点的对应点与C一定关于A对称,A是对称点连线的中点,据此即可求解.
试题解析:AC=2,
则正方形ABCD绕点A顺时针方向旋转180°后C的对应点设是C′,则AC′=AC=2,
则OC′=3,
故C′的坐标是(3,0).
故选B.
考点:坐标与图形变化-旋转.
10、B
【解析】
根据题意确定出小昱和阿帆所写的数字,设小昱所写的第n个数为101,根据规律确定出n的值,即可确定出阿帆在该页写的数.
【详解】
解:小昱所写的数为 1,3,5,1,…,101,…;阿帆所写的数为 1,8,15,22,…,
设小昱所写的第n个数为101,
根据题意得:101=1+(n-1)×2,
整理得:2(n-1)=100,即n-1=50,
解得:n=51,
则阿帆所写的第51个数为1+(51-1)×1=1+50×1=1+350=2.
故选B.
【点睛】
此题考查了有理数的混合运算,弄清题中的规律是解本题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、或或1
【解析】
如图所示:
①当AP=AE=1时,∵∠BAD=90°,∴△AEP是等腰直角三角形,∴底边PE=AE=;
②当PE=AE=1时,∵BE=AB﹣AE=8﹣1=3,∠B=90°,∴PB==4,∴底边AP===;
③当PA=PE时,底边AE=1;
综上所述:等腰三角形AEP的对边长为或或1;
故答案为或或1.
12、.
【解析】
根据去括号法则和合并同类二次根式法则计算即可.
【详解】
解:原式
故答案为:
【点睛】
此题考查的是二次根式的加减运算,掌握去括号法则和合并同类二次根式法则是解决此题的关键.
13、1
【解析】
【分析】设四边形BCED的面积为x,则S△ADE=12﹣x,由题意知DE∥BC且DE=BC,从而得,据此建立关于x的方程,解之可得.
【详解】设四边形BCED的面积为x,则S△ADE=12﹣x,
∵点D、E分别是边AB、AC的中点,
∴DE是△ABC的中位线,
∴DE∥BC,且DE=BC,
∴△ADE∽△ABC,
则=,即,
解得:x=1,
即四边形BCED的面积为1,
故答案为1.
【点睛】本题主要考查相似三角形的判定与性质,解题的关键是掌握中位线定理及相似三角形的面积比等于相似比的平方的性质.
14、
【解析】
乘积为1的两数互为相反数,即a的倒数即为,符号一致
【详解】
∵-3的倒数是
∴答案是
15、1.
【解析】
因为一本书的厚度是一定的,根据本数与书的高度成正比列比例式即可得到结论.
【详解】
设这些书有x本,
由题意得,,
解得:x=1,
答:这些书有1本.
故答案为:1.
【点睛】
本题考查了比例的性质,正确的列出比例式是解题的关键.
16、
【解析】
由DE∥BC不难证明△ABC△ADE,再由,将题中数值代入并根据等量关系计算AE的长.
【详解】
解:由DE∥BC不难证明△ABC△ADE,
∵,CE=4,
∴,
解得:AE=
故答案为.
【点睛】
本题考查了相似三角形的判定和性质,熟记三角形的判定和性质是解题关键.
三、解答题(共8题,共72分)
17、(1)y=﹣x﹣2;(2)C(﹣2,0),△AOB=6,,(3)﹣4<x<0或x>2.
【解析】
(1)先把B点坐标代入代入y=,求出m得到反比例函数解析式,再利用反比例函数解析式确定A点坐标,然后利用待定系数法求一次函数解析式;
(2)根据x轴上点的坐标特征确定C点坐标,然后根据三角形面积公式和△AOB的面积=S△AOC+S△BOC进行计算;
(3)观察函数图象得到当﹣4<x<0或x>2时,一次函数图象都在反比例函数图象下方.
【详解】
解:∵B(2,﹣4)在反比例函数y=的图象上,
∴m=2×(﹣4)=﹣8,
∴反比例函数解析式为:y=﹣,
把A(﹣4,n)代入y=﹣,
得﹣4n=﹣8,解得n=2,
则A点坐标为(﹣4,2).
把A(﹣4,2),B(2,﹣4)分别代入y=kx+b,
得,解得,
∴一次函数的解析式为y=﹣x﹣2;
(2)∵y=﹣x﹣2,
∴当﹣x﹣2=0时,x=﹣2,
∴点C的坐标为:(﹣2,0),
△AOB的面积=△AOC的面积+△COB的面积
=×2×2+×2×4
=6;
(3)由图象可知,当﹣4<x<0或x>2时,一次函数的值小于反比例函数的值.
【点睛】
本题考查的是一次函数与反比例函数的交点问题以及待定系数法的运用,灵活运用待定系数法是解题的关键,注意数形结合思想的正确运用.
18、(1)1;(2)-1≤x<1.
【解析】
试题分析:(1)、首先根据绝对值、幂、三角函数的计算法则得出各式的值,然后进行求和得出答案;(2)、分半求出每个不等式的解,然后得出不等式组的解.
试题解析:解:(1)、
(2)、 由得:x<1,由得:x≥-1,∴不等式的解集:-1≤x<1.
19、(1)y=x2+x﹣4;(2)S关于m的函数关系式为S=﹣m2﹣2m+8,当m=﹣1时,S有最大值9;(3)Q坐标为(﹣4,4)或(﹣2+2,2﹣2)或(﹣2﹣2,2+2)时,使点P,Q,B,O为顶点的四边形是平行四边形.
【解析】
(1)设抛物线解析式为y= ax2 + bx + c,然后把点A、B、C的坐标代入函数解析式,利用待定系数法求解即可;
(2)利用抛物线的解析式表示出点M的纵坐标,从而得到点M到x轴的距离,然后根据三角形面积公式表示并整理即可得解,根据抛物线的性质求出第三象限内二次函数的最值,然后即可得解;
(3)利用直线与抛物线的解析式表示出点P、Q的坐标,然后求出PQ的长度,再根据平行四边形的对边相等列出算式,然后解关于x的一元二次方程即可得解.
【详解】
解:(1)设抛物线解析式为y=ax2+bx+c,
∵抛物线经过A(﹣4,0),B(0,﹣4),C(2,0),
∴,
解得,
∴抛物线解析式为y=x2+x﹣4;
(2)∵点M的横坐标为m,
∴点M的纵坐标为m2+m﹣4,
又∵A(﹣4,0),
∴AO=0﹣(﹣4)=4,
∴S=×4×|m2+m﹣4|=﹣(m2+2m﹣8)=﹣m2﹣2m+8,
∵S=﹣(m2+2m﹣8)=﹣(m+1)2+9,点M为第三象限内抛物线上一动点,
∴当m=﹣1时,S有最大值,最大值为S=9;
故答案为S关于m的函数关系式为S=﹣m2﹣2m+8,当m=﹣1时,S有最大值9;
(3)∵点Q是直线y=﹣x上的动点,
∴设点Q的坐标为(a,﹣a),
∵点P在抛物线上,且PQ∥y轴,
∴点P的坐标为(a,a2+a﹣4),
∴PQ=﹣a﹣(a2+a﹣4)=﹣a2﹣2a+4,
又∵OB=0﹣(﹣4)=4,
以点P,Q,B,O为顶点的四边形是平行四边形,
∴|PQ|=OB,
即|﹣a2﹣2a+4|=4,
①﹣a2﹣2a+4=4时,整理得,a2+4a=0,
解得a=0(舍去)或a=﹣4,
﹣a=4,
所以点Q坐标为(﹣4,4),
②﹣a2﹣2a+4=﹣4时,整理得,a2+4a﹣16=0,
解得a=﹣2±2,
所以点Q的坐标为(﹣2+2,2﹣2)或(﹣2﹣2,2+2),
综上所述,Q坐标为(﹣4,4)或(﹣2+2,2﹣2)或(﹣2﹣2,2+2)时,使点P,Q,B,O为顶点的四边形是平行四边形.
【点睛】
本题是对二次函数的综合考查有待定系数法求二次函数解析式,三角形的面积,二次函数的最值问题,平行四边形的对边相等的性质,平面直角坐标系中两点间的距离的表示,综合性较强,但难度不大,仔细分析便不难求解.
20、解:(1) yA=27x+270,yB=30x+240;(2)当2≤x<10时,到B超市购买划算,当x=10时,两家超市一样划算,当x>10时在A超市购买划算;(3)先选择B超市购买10副羽毛球拍,然后在A超市购买130个羽毛球.
【解析】
(1)根据购买费用=单价×数量建立关系就可以表示出yA、yB的解析式;
(2)分三种情况进行讨论,当yA=yB时,当yA>yB时,当yA<yB时,分别求出购买划算的方案;
(3)分两种情况进行讨论计算求出需要的费用,再进行比较就可以求出结论.
【详解】
解:(1)由题意,得yA=(10×30+3×10x)×0.9=27x+270;
yB=10×30+3(10x﹣20)=30x+240;
(2)当yA=yB时,27x+270=30x+240,得x=10;
当yA>yB时,27x+270>30x+240,得x<10;
当yA<yB时,27x+270<30x+240,得x>10
∴当2≤x<10时,到B超市购买划算,当x=10时,两家超市一样划算,当x>10时在A超市购买划算.
(3)由题意知x=15,15>10,
∴选择A超市,yA=27×15+270=675(元),
先选择B超市购买10副羽毛球拍,送20个羽毛球,然后在A超市购买剩下的羽毛球:
(10×15﹣20)×3×0.9=351(元),
共需要费用10×30+351=651(元).
∵651元<675元,
∴最佳方案是先选择B超市购买10副羽毛球拍,然后在A超市购买130个羽毛球.
【点睛】
本题考查一次函数的应用,根据题意确列出函数关系式是本题的解题关键.
21、(1)600(2)见解析
(3)3200(4)
【解析】
(1)60÷10%=600(人).
答:本次参加抽样调查的居民有600人.(2分)
(2)如图;…(5分)
(3)8000×40%=3200(人).
答:该居民区有8000人,估计爱吃D粽的人有3200人.…(7分)
(4)如图;
(列表方法略,参照给分).…(8分)
P(C粽)==.
答:他第二个吃到的恰好是C粽的概率是.…(10分)
22、(1)证明见解析;(2)BC=2CD,理由见解析.
【解析】
分析:(1)利用矩形的性质,即可判定△FAE≌△CDE,即可得到CD=FA,再根据CD∥AF,即可得出四边形ACDF是平行四边形;
(2)先判定△CDE是等腰直角三角形,可得CD=DE,再根据E是AD的中点,可得AD=2CD,依据AD=BC,即可得到BC=2CD.
详解:(1)∵四边形ABCD是矩形,
∴AB∥CD,
∴∠FAE=∠CDE,
∵E是AD的中点,
∴AE=DE,
又∵∠FEA=∠CED,
∴△FAE≌△CDE,
∴CD=FA,
又∵CD∥AF,
∴四边形ACDF是平行四边形;
(2)BC=2CD.
证明:∵CF平分∠BCD,
∴∠DCE=45°,
∵∠CDE=90°,
∴△CDE是等腰直角三角形,
∴CD=DE,
∵E是AD的中点,
∴AD=2CD,
∵AD=BC,
∴BC=2CD.
点睛:本题主要考查了矩形的性质以及平行四边形的判定与性质,要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角、分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的.
23、(1)①12,3. ②详见解析.(2).
【解析】
分析:(1)①根据题意和表中的数据可以求得a的值;②由表格中的数据可以将频数分布表补充完整;
(2)根据表格中的数据和测试成绩不低于80分为优秀,可以求得优秀率;
(3)根据题意可以求得所有的可能性,从而可以得到小明与小强两名男同学能分在同一组的概率.
详解:(1)①a=50﹣(6+8+14+10)=12,
中位数为第25、26个数的平均数,而第25、26个数均落在第3组内,
所以中位数落在第3组,
故答案为12,3;
②如图,
(2)×100%=44%,
答:本次测试的优秀率是44%;
(3)设小明和小强分别为A、B,另外两名学生为:C、D,
则所有的可能性为:(AB﹣CD)、(AC﹣BD)、(AD﹣BC).
所以小明和小强分在一起的概率为:.
点睛:本题考查列举法求概率、频数分布表、频数分布直方图、中位数,解题的关键是明确题意,找出所求问题需要的条件,可以将所有的可能性都写出来,求出相应的概率.
24、见解析
【解析】
试题分析:探究:由四边形ABCD、四边形CEFG均为菱形,利用SAS易证得△BCE≌△DCG,则可得BE=DG;
应用:由AD∥BC,BE=DG,可得S△ABE+S△CDE=S△BEC=S△CDG=8,又由AE=3ED,可求得△CDE的面积,继而求得答案.
试题解析:
探究:∵四边形ABCD、四边形CEFG均为菱形,
∴BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F.
∵∠A=∠F,
∴∠BCD=∠ECG.
∴∠BCD-∠ECD=∠ECG-∠ECD,
即∠BCE=∠DCG.
在△BCE和△DCG中,
∴△BCE≌△DCG(SAS),
∴BE=DG.
应用:∵四边形ABCD为菱形,
∴AD∥BC,
∵BE=DG,
∴S△ABE+S△CDE=S△BEC=S△CDG=8,
∵AE=3ED,
∴S△CDE= ,
∴S△ECG=S△CDE+S△CDG=10
∴S菱形CEFG=2S△ECG=20.
相关试卷
这是一份2021-2022学年宁夏中学宁县毕业升学考试模拟卷数学卷含解析,共19页。试卷主要包含了一元二次方程的根的情况是,八边形的内角和为,有以下图形等内容,欢迎下载使用。
这是一份2021-2022学年内蒙古包头市、巴彦淖尔市毕业升学考试模拟卷数学卷含解析,共21页。试卷主要包含了答题时请按要求用笔,下列计算正确的是等内容,欢迎下载使用。
这是一份2021-2022学年海南东坡校毕业升学考试模拟卷数学卷含解析,共24页。试卷主要包含了考生要认真填写考场号和座位序号,如图,能判定EB∥AC的条件是,计算-5x2-3x2的结果是,若,则的值为,化简的结果是,估计的值在等内容,欢迎下载使用。