|试卷下载
搜索
    上传资料 赚现金
    2021-2022学年山东省青岛5中重点名校中考数学对点突破模拟试卷含解析
    立即下载
    加入资料篮
    2021-2022学年山东省青岛5中重点名校中考数学对点突破模拟试卷含解析01
    2021-2022学年山东省青岛5中重点名校中考数学对点突破模拟试卷含解析02
    2021-2022学年山东省青岛5中重点名校中考数学对点突破模拟试卷含解析03
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年山东省青岛5中重点名校中考数学对点突破模拟试卷含解析

    展开
    这是一份2021-2022学年山东省青岛5中重点名校中考数学对点突破模拟试卷含解析,共19页。试卷主要包含了对于反比例函数y=,某反比例函数的图象经过点等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.天气越来越热,为防止流行病传播,学校决定用420元购买某种牌子的消毒液,经过还价,每瓶便宜0.5元,结果比用原价购买多买了20瓶,求原价每瓶多少元?设原价每瓶x元,则可列出方程为( )
    A.-=20 B.-=20
    C.-=20 D.
    2.在Rt△ABC中,∠C=90°,AC=1,BC=3,则∠A的正切值为(  )
    A.3 B. C. D.
    3.在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,则下列结论正确的是(  )

    A.a<0,b<0,c>0
    B.﹣=1
    C.a+b+c<0
    D.关于x的方程ax2+bx+c=﹣1有两个不相等的实数根
    4.对于反比例函数y=(k≠0),下列所给的四个结论中,正确的是(  )
    A.若点(3,6)在其图象上,则(﹣3,6)也在其图象上
    B.当k>0时,y随x的增大而减小
    C.过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为k
    D.反比例函数的图象关于直线y=﹣x成轴对称
    5.一组数据3、2、1、2、2的众数,中位数,方差分别是( )
    A.2,1,0.4 B.2,2,0.4
    C.3,1,2 D.2,1,0.2
    6.在下列交通标志中,既是轴对称图形,又是中心对称图形的是( )
    A. B. C. D.
    7.要使分式有意义,则x的取值范围是( )
    A.x= B.x> C.x< D.x≠
    8.如图是某几何体的三视图,则该几何体的全面积等于(  )

    A.112 B.136 C.124 D.84
    9.某反比例函数的图象经过点(-2,3),则此函数图象也经过( )
    A.(2,-3) B.(-3,3) C.(2,3) D.(-4,6)
    10.不等式组的解集表示在数轴上正确的是(  )
    A. B. C. D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.PA、PB分别切⊙O于点A、B,∠PAB=60°,点C在⊙O上,则∠ACB的度数为_____.
    12.下面是用棋子摆成的“上”字:

    如果按照以上规律继续摆下去,那么通过观察,可以发现:第n个“上”字需用_____枚棋子.
    13.如果点、是二次函数是常数图象上的两点,那么______填“”、“”或“”
    14.若一个多边形的每一个外角都等于40°,则这个多边形的边数是 .
    15.如图,在△ABC中,∠C=90°,D是AC上一点,DE⊥AB于点E,若AC=8,BC=6,DE=3,则AD的长为 ________.

    16.计算:×(﹣2)=___________.
    17.从,0,π,3.14,6这五个数中随机抽取一个数,抽到有理数的概率是____.
    三、解答题(共7小题,满分69分)
    18.(10分)如图,在四边形ABCD中,∠BAC=∠ACD=90°,∠B=∠D.
    (1)求证:四边形ABCD是平行四边形;
    (2)若AB=3cm,BC=5cm,AE=AB,点P从B点出发,以1cm/s的速度沿BC→CD→DA运动至A点停止,则从运动开始经过多少时间,△BEP为等腰三角形.

    19.(5分)如图,∠BCD=90°,且BC=DC,直线PQ经过点D.设∠PDC=α(45°<α<135°),BA⊥PQ于点A,将射线CA绕点C按逆时针方向旋转90°,与直线PQ交于点E.当α=125°时,∠ABC=   °;求证:AC=CE;若△ABC的外心在其内部,直接写出α的取值范围.

    20.(8分)解方程
    (1);(2)
    21.(10分)如图,在平面直角坐标系中,以直线为对称轴的抛物线与直线交于,两点,与轴交于,直线与轴交于点.
    (1)求抛物线的函数表达式;
    (2)设直线与抛物线的对称轴的交点为,是抛物线上位于对称轴右侧的一点,若,且与的面积相等,求点的坐标;
    (3)若在轴上有且只有一点,使,求的值.

    22.(10分)为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.甲、乙两工程队每天能改造道路的长度分别是多少米?若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?
    23.(12分)某商场销售一批名牌衬衫,平均每天可以销售20件,每件盈利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元?
    24.(14分)如图,已知抛物线y=ax2+bx+5经过A(﹣5,0),B(﹣4,﹣3)两点,与x轴的另一个交点为C,顶点为D,连结CD.求该抛物线的表达式;点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t.
    ①当点P在直线BC的下方运动时,求△PBC的面积的最大值;
    ②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    关键描述语是:“结果比用原价多买了1瓶”;等量关系为:原价买的瓶数-实际价格买的瓶数=1.
    【详解】
    原价买可买瓶,经过还价,可买瓶.方程可表示为:﹣=1.
    故选C.
    【点睛】
    考查了由实际问题抽象出分式方程.列方程解应用题的关键步骤在于找相等关系.本题要注意讨价前后商品的单价的变化.
    2、A
    【解析】
    【分析】根据锐角三角函数的定义求出即可.
    【详解】∵在Rt△ABC中,∠C=90°,AC=1,BC=3,
    ∴∠A的正切值为=3,
    故选A.
    【点睛】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义的内容是解此题的关键.
    3、D
    【解析】
    试题分析:根据图像可得:a<0,b>0,c<0,则A错误;,则B错误;当x=1时,y=0,即a+b+c=0,则C错误;当y=-1时有两个交点,即有两个不相等的实数根,则正确,故选D.
    4、D
    【解析】
    分析:根据反比例函数的性质一一判断即可;
    详解:A.若点(3,6)在其图象上,则(﹣3,6)不在其图象上,故本选项不符合题意;
    B.当k>0时,y随x的增大而减小,错误,应该是当k>0时,在每个象限,y随x的增大而减小;故本选项不符合题意;
    C.错误,应该是过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为|k|;故本选项不符合题意;
    D.正确,本选项符合题意.
    故选D.
    点睛:本题考查了反比例函数的性质,解题的关键是熟练掌握反比例函数的性质,灵活运用所学知识解决问题,属于中考常考题型.
    5、B
    【解析】
    试题解析:从小到大排列此数据为:1,2,2,2,3;数据2出现了三次最多为众数,2处在第3位为中位数.平均数为(3+2+1+2+2)÷5=2,方差为 [(3-2)2+3×(2-2)2+(1-2)2]=0.1,即中位数是2,众数是2,方差为0.1.
    故选B.
    6、C
    【解析】
    根据轴对称图形和中心对称图形的定义进行分析即可.
    【详解】
    A、不是轴对称图形,也不是中心对称图形.故此选项错误;
    B、不是轴对称图形,也不是中心对称图形.故此选项错误;
    C、是轴对称图形,也是中心对称图形.故此选项正确;
    D、是轴对称图形,但不是中心对称图形.故此选项错误.
    故选C.
    【点睛】
    考点:1、中心对称图形;2、轴对称图形
    7、D
    【解析】
    本题主要考查分式有意义的条件:分母不能为0,即3x−7≠0,解得x.
    【详解】
    ∵3x−7≠0,
    ∴x≠.
    故选D.
    【点睛】
    本题考查的是分式有意义的条件:当分母不为0时,分式有意义.
    8、B
    【解析】
    试题解析:该几何体是三棱柱.
    如图:

    由勾股定理

    全面积为:
    故该几何体的全面积等于1.
    故选B.
    9、A
    【解析】
    设反比例函数y=(k为常数,k≠0),由于反比例函数的图象经过点(-2,3),则k=-6,然后根据反比例函数图象上点的坐标特征分别进行判断.
    【详解】
    设反比例函数y=(k为常数,k≠0),
    ∵反比例函数的图象经过点(-2,3),
    ∴k=-2×3=-6,
    而2×(-3)=-6,(-3)×(-3)=9,2×3=6,-4×6=-24,
    ∴点(2,-3)在反比例函数y=- 的图象上.
    故选A.
    【点睛】
    本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.
    10、C
    【解析】
    根据题意先解出的解集是,
    把此解集表示在数轴上要注意表示时要注意起始标记为空心圆圈,方向向右;
    表示时要注意方向向左,起始的标记为实心圆点,
    综上所述C的表示符合这些条件.
    故应选C.

    二、填空题(共7小题,每小题3分,满分21分)
    11、60°或120°.
    【解析】
    连接OA、OB,根据切线的性质得出∠OAP的度数,∠OBP的度数;再根据四边形的内角和是360°,求出∠AOB的度数,有圆周角定理或圆内接四边形的性质,求出∠ACB的度数即可.
    【详解】
    解:连接OA、OB.
    ∵PA,PB分别切⊙O于点A,B,
    ∴OA⊥PA,OB⊥PB;
    ∴∠PAO=∠PBO=90°;
    又∵∠APB=60°,
    ∴在四边形AOBP中,∠AOB=360°﹣90°﹣90°﹣60°=120°,

    即当C在D处时,∠ACB=60°.
    在四边形ADBC中,∠ACB=180°﹣∠ADB=180°﹣60°=120°.
    于是∠ACB的度数为60°或120°,
    故答案为60°或120°.

    【点睛】
    本题考查的是切线的性质定理,圆内接四边形的性质,是一道基础题.
    12、4n+2
    【解析】
    ∵第1个有:6=4×1+2;
    第2个有:10=4×2+2;
    第3个有:14=4×3+2;
    ……
    ∴第1个有: 4n+2;
    故答案为4n+2
    13、
    【解析】
    根据二次函数解析式可知函数图象对称轴是x=0,且开口向上,分析可知两点均在对称轴左侧的图象上;接下来,结合二次函数的性质可判断对称轴左侧图象的增减性,
    【详解】
    解:二次函数的函数图象对称轴是x=0,且开口向上,
    ∴在对称轴的左侧y随x的增大而减小,
    ∵-3>-4,∴>.
    故答案为>.
    【点睛】
    本题考查了二次函数的图像和数形结合的数学思想.
    14、9
    【解析】
    解:360÷40=9,即这个多边形的边数是9
    15、1
    【解析】
    如图,由勾股定理可以先求出AB的值,再证明△AED∽△ACB,根据相似三角形的性质就可以求出结论.
    【详解】
    在Rt△ABC中,由勾股定理.得
    AB==10,
    ∵DE⊥AB,
    ∴∠AED=∠C=90°.
    ∵∠A=∠A,
    ∴△AED∽△ACB,
    ∴,
    ∴,
    ∴AD=1.
    故答案为1
    【点睛】
    本题考查了勾股定理的运用,相似三角形的判定及性质的运用,解答时求出△AED∽△ACB是解答本题的关键.
    16、-1
    【解析】
    根据“两数相乘,异号得负,并把绝对值相乘”即可求出结论.
    【详解】

    故答案为
    【点睛】
    本题考查了有理数的乘法,牢记“两数相乘,同号得正,异号得负,并把绝对值相乘”是解题的关键.
    17、
    【解析】
    分析:
    由题意可知,从,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中是有理数的有3种,由此即可得到所求概率了.
    详解:
    ∵从,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中有理数有0,3.14,6共3个,
    ∴抽到有理数的概率是:.
    故答案为.
    点睛:知道“从,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果”并能识别其中“0,3.14,6”是有理数是解答本题的关键.

    三、解答题(共7小题,满分69分)
    18、(1)证明见解析;(2)从运动开始经过2s或s或s或s时,△BEP为等腰三角形.
    【解析】
    (1)根据内错角相等,得到两边平行,然后再根据三角形内角和等于180度得到另一对内错角相等,从而证得原四边形是平行四边形;(2)分别考虑P在BC和DA上的情况求出t的值.
    【详解】
    解:(1)∵∠BAC=∠ACD=90°,
    ∴AB∥CD,
    ∵∠B=∠D,∠B+∠BAC+∠ACB=∠D+∠ACD+∠DAC=180°,
    ∴∠DAC=∠ACB,
    ∴AD∥BC,
    ∴四边形ABCD是平行四边形.
    (2)∵∠BAC=90°,BC=5cm,AB=3cm,′
    由勾股定理得:AC=4cm,
    即AB、CD间的最短距离是4cm,
    ∵AB=3cm,AE=AB,
    ∴AE=1cm,BE=2cm,
    设经过ts时,△BEP是等腰三角形,
    当P在BC上时,
    ①BP=EB=2cm,
    t=2时,△BEP是等腰三角形;
    ②BP=PE,
    作PM⊥AB于M,

    ∴BM=ME=BE=1cm
    ∵cos∠ABC=,
    ∴BP=cm,
    t=时,△BEP是等腰三角形;
    ③BE=PE=2cm,
    作EN⊥BC于N,则BP=2BN,
    ∴cosB=,
    ∴,
    BN=cm,
    ∴BP=,
    ∴t=时,△BEP是等腰三角形;
    当P在CD上不能得出等腰三角形,
    ∵AB、CD间的最短距离是4cm,CA⊥AB,CA=4cm,
    当P在AD上时,只能BE=EP=2cm,
    过P作PQ⊥BA于Q,
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC,
    ∴∠QAD=∠ABC,
    ∵∠BAC=∠Q=90°,
    ∴△QAP∽△ABC,
    ∴PQ:AQ:AP=4:3:5,
    设PQ=4xcm,AQ=3xcm,
    在△EPQ中,由勾股定理得:(3x+1)2+(4x)2=22,
    ∴x= ,
    AP=5x=cm,
    ∴t=5+5+3﹣=,
    答:从运动开始经过2s或s或s或s时,△BEP为等腰三角形.
    【点睛】
    本题主要考查平行四边形的判定定理及一元二次方程的解法,要求学生能够熟练利用边角关系解三角形.
    19、(1)125;(2)详见解析;(3)45°<α<90°.
    【解析】
    (1)利用四边形内角和等于360度得:∠B+∠ADC=180°,而∠ADC+∠EDC=180°,即可求解;
    (2)证明△ABC≌△EDC(AAS)即可求解;
    (3)当∠ABC=α=90°时,△ABC的外心在其直角边上,∠ABC=α>90°时,△ABC的外心在其外部,即可求解.
    【详解】
    (1)在四边形BADC中,∠B+∠ADC=360°﹣∠BAD﹣∠DCB=180°,
    而∠ADC+∠EDC=180°,
    ∴∠ABC=∠PDC=α=125°,
    故答案为125;
    (2)∠ECD+∠DCA=90°,∠DCA+∠ACB=90°,
    ∴∠ACB=∠ECD,
    又BC=DC,由(1)知:∠ABC=∠PDC,
    ∴△ABC≌△EDC(AAS),
    ∴AC=CE;
    (3)当∠ABC=α=90°时,△ABC的外心在其斜边上;∠ABC=α>90°时,△ABC的外心在其外部,而45°<α<135°,故:45°<α<90°.
    【点睛】
    本题考查圆的综合运用,解题的关键是掌握三角形全等的判定和性质(AAS)、三角形外心.
    20、(1),;(2),.
    【解析】
    (1)利用公式法求解可得;
    (2)利用因式分解法求解可得.
    【详解】
    (1)解:∵,,,
    ∴,
    ∴,
    ∴,;
    (2)解:原方程化为:,
    因式分解得:,
    整理得:,
    ∴或,
    ∴,.
    【点睛】
    本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.
    21、(1).;(2)点坐标为;.(3).
    【解析】
    分析:(1)根据已知列出方程组求解即可;
    (2)作AM⊥x轴,BN⊥x轴,垂足分别为M,N,求出直线l的解析式,再分两种情况分别求出G点坐标即可;
    (3)根据题意分析得出以AB为直径的圆与x轴只有一个交点,且P为切点,P为MN的中点,运用三角形相似建立等量关系列出方程求解即可.
    详解:(1)由题可得:解得,,.
    二次函数解析式为:.
    (2)作轴,轴,垂足分别为,则.

    ,,,
    ,解得,,.
    同理,.

    ①(在下方),,
    ,即,.
    ,,.
    ②在上方时,直线与关于对称.
    ,,.
    ,,.
    综上所述,点坐标为;.
    (3)由题意可得:.
    ,,,即.
    ,,.
    设的中点为,
    点有且只有一个,以为直径的圆与轴只有一个交点,且为切点.
    轴,为的中点,.
    ,,,
    ,即,.
    ,.
    点睛:此题主要考查二次函数的综合问题,会灵活根据题意求抛物线解析式,会分析题中的基本关系列方程解决问题,会分类讨论各种情况是解题的关键.
    22、(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)10天.
    【解析】
    (1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据工作时间=工作总量÷工作效率结合甲队改造360米的道路比乙队改造同样长的道路少用3天,即可得出关于x的分式方程,解之经检验后即可得出结论;
    (2)设安排甲队工作m天,则安排乙队工作天,根据总费用=甲队每天所需费用×工作时间+乙队每天所需费用×工作时间结合总费用不超过145万元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.
    【详解】
    (1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,
    根据题意得:,
    解得:x=40,
    经检验,x=40是原分式方程的解,且符合题意,
    ∴x=×40=60,
    答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米;
    (2)设安排甲队工作m天,则安排乙队工作天,
    根据题意得:7m+5×≤145,
    解得:m≥10,
    答:至少安排甲队工作10天.
    【点睛】
    本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.
    23、每件衬衫应降价1元.
    【解析】
    利用衬衣平均每天售出的件数×每件盈利=每天销售这种衬衣利润列出方程解答即可.
    【详解】
    解:设每件衬衫应降价x元.
    根据题意,得 (40-x)(1+2x)=110,
    整理,得x2-30x+10=0,
    解得x1=10,x2=1.
    ∵“扩大销售量,减少库存”,
    ∴x1=10应舍去,
    ∴x=1.
    答:每件衬衫应降价1元.
    【点睛】
    此题主要考查了一元二次方程的应用,利用基本数量关系:平均每天售出的件数×每件盈利=每天销售的利润是解题关键.
    24、 (1)y=x2+6x+5;(2)①S△PBC的最大值为;②存在,点P的坐标为P(﹣,﹣)或(0,5).
    【解析】
    (1)将点A、B坐标代入二次函数表达式,即可求出二次函数解析式;
    (2)①如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=x+1,设点G(t,t+1),则点P(t,t2+6t+5),利用三角形面积公式求出最大值即可;
    ②设直线BP与CD交于点H,当点P在直线BC下方时,求出线段BC的中点坐标为(﹣,﹣),过该点与BC垂直的直线的k值为﹣1,求出 直线BC中垂线的表达式为:y=﹣x﹣4…③,同理直线CD的表达式为:y=2x+2…④,、联立③④并解得:x=﹣2,即点H(﹣2,﹣2),同理可得直线BH的表达式为:y=x﹣1…⑤,联立⑤和y=x2+6x+5并解得:x=﹣,即可求出P点;当点P(P′)在直线BC上方时,根据∠PBC=∠BCD求出BP′∥CD,求出直线BP′的表达式为:y=2x+5,联立y=x2+6x+5和y=2x+5,求出x,即可求出P.
    【详解】
    解:(1)将点A、B坐标代入二次函数表达式得:,
    解得:,
    故抛物线的表达式为:y=x2+6x+5…①,
    令y=0,则x=﹣1或﹣5,
    即点C(﹣1,0);
    (2)①如图1,过点P作y轴的平行线交BC于点G,

    将点B、C的坐标代入一次函数表达式并解得:
    直线BC的表达式为:y=x+1…②,
    设点G(t,t+1),则点P(t,t2+6t+5),
    S△PBC=PG(xC﹣xB)=(t+1﹣t2﹣6t﹣5)=﹣t2﹣t﹣6,
    ∵-<0,
    ∴S△PBC有最大值,当t=﹣时,其最大值为;
    ②设直线BP与CD交于点H,

    当点P在直线BC下方时,
    ∵∠PBC=∠BCD,
    ∴点H在BC的中垂线上,
    线段BC的中点坐标为(﹣,﹣),
    过该点与BC垂直的直线的k值为﹣1,
    设BC中垂线的表达式为:y=﹣x+m,将点(﹣,﹣)代入上式并解得:
    直线BC中垂线的表达式为:y=﹣x﹣4…③,
    同理直线CD的表达式为:y=2x+2…④,
    联立③④并解得:x=﹣2,即点H(﹣2,﹣2),
    同理可得直线BH的表达式为:y=x﹣1…⑤,
    联立①⑤并解得:x=﹣或﹣4(舍去﹣4),
    故点P(﹣,﹣);
    当点P(P′)在直线BC上方时,
    ∵∠PBC=∠BCD,∴BP′∥CD,
    则直线BP′的表达式为:y=2x+s,将点B坐标代入上式并解得:s=5,
    即直线BP′的表达式为:y=2x+5…⑥,
    联立①⑥并解得:x=0或﹣4(舍去﹣4),
    故点P(0,5);
    故点P的坐标为P(﹣,﹣)或(0,5).
    【点睛】
    本题考查的是二次函数,熟练掌握抛物线的性质是解题的关键.

    相关试卷

    山东省济宁市、曲阜市重点达标名校2021-2022学年中考数学对点突破模拟试卷含解析: 这是一份山东省济宁市、曲阜市重点达标名校2021-2022学年中考数学对点突破模拟试卷含解析,共20页。试卷主要包含了已知等内容,欢迎下载使用。

    北京海淀区重点名校2021-2022学年中考数学对点突破模拟试卷含解析: 这是一份北京海淀区重点名校2021-2022学年中考数学对点突破模拟试卷含解析,共19页。

    2021-2022学年山东省潍坊市名校中考数学对点突破模拟试卷含解析: 这是一份2021-2022学年山东省潍坊市名校中考数学对点突破模拟试卷含解析,共17页。试卷主要包含了下面运算结果为的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map