2021-2022学年山东省临沂市蒙阴县中考数学模拟预测试卷含解析
展开
这是一份2021-2022学年山东省临沂市蒙阴县中考数学模拟预测试卷含解析,共20页。试卷主要包含了下列计算正确的是,反比例函数是y=的图象在,如图,内接于,若,则,已知等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.下列运算正确的是( )
A.(a2)5=a7 B.(x﹣1)2=x2﹣1
C.3a2b﹣3ab2=3 D.a2•a4=a6
2.等腰三角形一边长等于5,一边长等于10,它的周长是( )
A.20 B.25 C.20或25 D.15
3.直线AB、CD相交于点O,射线OM平分∠AOD,点P在射线OM上(点P与点O不重合),如果以点P为圆心的圆与直线AB相离,那么圆P与直线CD的位置关系是( )
A.相离 B.相切 C.相交 D.不确定
4.下列关于x的方程一定有实数解的是( )
A. B.
C. D.
5.下列计算正确的是( )
A.a3﹣a2=a B.a2•a3=a6
C.(a﹣b)2=a2﹣b2 D.(﹣a2)3=﹣a6
6.反比例函数是y=的图象在( )
A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限
7.如图,内接于,若,则
A. B. C. D.
8.如图,△ABC中,AD⊥BC,AB=AC,∠BAD=30°,且AD=AE,则∠EDC等于( )
A.10° B.12.5° C.15° D.20°
9.已知关于x的不等式3x﹣m+1>0的最小整数解为2,则实数m的取值范围是( )
A.4≤m<7 B.4<m<7 C.4≤m≤7 D.4<m≤7
10.已知:如图四边形OACB是菱形,OB在X轴的正半轴上,sin∠AOB=.反比例函数y=在第一象限图象经过点A,与BC交于点F.S△AOF=,则k=( )
A.15 B.13 C.12 D.5
二、填空题(共7小题,每小题3分,满分21分)
11.《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?设有x匹大马,y匹小马,根据题意可列方程组为______.
12.反比例函数的图象经过点和,则 ______ .
13.⊙M的圆心在一次函数y=x+2图象上,半径为1.当⊙M与y轴相切时,点M的坐标为_____.
14.如图,在边长为3的正方形ABCD中,点E是BC边上的点,EC=2,∠AEP=90°,且EP交正方形外角的平分线CP于点P,则PC的长为_____.
15.函数y=+的自变量x的取值范围是_____.
16.点G是三角形ABC的重心,,,那么 =_____.
17.已知点、都在反比例函数的图象上,若,则k的值可以取______写出一个符合条件的k值即可.
三、解答题(共7小题,满分69分)
18.(10分)某企业为杭州计算机产业基地提供电脑配件.受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y1(元)与月份x(1≤x≤9,且x取整数)之间的函数关系如下表:
月份x
1
2
3
4
5
6
7
8
9
价格y1(元/件)
560
580
600
620
640
660
680
700
720
随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y2(元)与月份x(10≤x≤12,且x取整数)之间存在如图所示的变化趋势:
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1 与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;
(2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量p1(万件)与月份x满足关系式p1=0.1x+1.1(1≤x≤9,且x取整数),10至12月的销售量p2(万件)p2=﹣0.1x+2.9(10≤x≤12,且x取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润.
19.(5分)目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.
根据图中信息求出m= ,n= ;请你帮助他们将这两个统计图补全;根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?已知A、B两位同学都最认可“微信”,C同学最认可“支付宝”D同学最认可“网购”从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.
20.(8分)观察猜想:
在Rt△ABC中,∠BAC=90°,AB=AC,点D在边BC上,连接AD,把△ABD绕点A逆时针旋转90°,点D落在点E处,如图①所示,则线段CE和线段BD的数量关系是 ,位置关系是 .探究证明:
在(1)的条件下,若点D在线段BC的延长线上,请判断(1)中结论是还成立吗?请在图②中画出图形,并证明你的判断.拓展延伸:
如图③,∠BAC≠90°,若AB≠AC,∠ACB=45°,AC=,其他条件不变,过点D作DF⊥AD交CE于点F,请直接写出线段CF长度的最大值.
21.(10分)为响应“植树造林、造福后人”的号召,某班组织部分同学义务植树棵,由于同学们的积极参与,实际参加的人数比原计划增加了,结果每人比原计划少栽了棵,问实际有多少人参加了这次植树活动?
22.(10分)水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.若将这种水果每斤的售价降低x元,则每天的销售量是 斤(用含x的代数式表示);销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?
23.(12分)如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.
(1)求证:OP=OQ;
(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合).设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD是菱形.
24.(14分)如图,在楼房AB和塔CD之间有一棵树EF,从楼顶A处经过树顶E点恰好看到塔的底部D点,且俯角α为45°,从楼底B点1米的P点处经过树顶E点恰好看到塔的顶部C点,且仰角β为30°.已知树高EF=6米,求塔CD的高度(结果保留根号).
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
根据幂的乘方法则:底数不变,指数相乘;完全平方公式:(a±b)2=a2±2ab+b2;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加分别进行计算即可.
【详解】
A、(a2)5=a10,故原题计算错误;
B、(x﹣1)2=x2﹣2x+1,故原题计算错误;
C、3a2b和3ab2不是同类项,不能合并,故原题计算错误;
D、a2•a4=a6,故原题计算正确;
故选:D.
【点睛】
此题主要考查了幂的乘方、完全平方公式、合并同类项和同底数幂的乘法,关键是掌握各计算法则.
2、B
【解析】
题目中没有明确腰和底,故要分情况讨论,再结合三角形的三边关系分析即可.
【详解】
当5为腰时,三边长为5、5、10,而,此时无法构成三角形;
当5为底时,三边长为5、10、10,此时可以构成三角形,它的周长
故选B.
3、A
【解析】
根据角平分线的性质和点与直线的位置关系解答即可.
【详解】
解:如图所示;
∵OM平分∠AOD,以点P为圆心的圆与直线AB相离,
∴以点P为圆心的圆与直线CD相离,
故选:A.
【点睛】
此题考查直线与圆的位置关系,关键是根据角平分线的性质解答.
4、A
【解析】
根据一元二次方程根的判别式、二次根式有意义的条件、分式方程的增根逐一判断即可得.
【详解】
A.x2-mx-1=0中△=m2+4>0,一定有两个不相等的实数根,符合题意;
B.ax=3中当a=0时,方程无解,不符合题意;
C.由可解得不等式组无解,不符合题意;
D.有增根x=1,此方程无解,不符合题意;
故选A.
【点睛】
本题主要考查方程的解,解题的关键是掌握一元二次方程根的判别式、二次根式有意义的条件、分式方程的增根.
5、D
【解析】
各项计算得到结果,即可作出判断.
解:A、原式不能合并,不符合题意;
B、原式=a5,不符合题意;
C、原式=a2﹣2ab+b2,不符合题意;
D、原式=﹣a6,符合题意,
故选D
6、B
【解析】
解:∵反比例函数是y=中,k=2>0,
∴此函数图象的两个分支分别位于一、三象限.
故选B.
7、B
【解析】
根据圆周角定理求出,根据三角形内角和定理计算即可.
【详解】
解:由圆周角定理得,,
,
,
故选:B.
【点睛】
本题考查的是三角形的外接圆与外心,掌握圆周角定理、等腰三角形的性质、三角形内角和定理是解题的关键.
8、C
【解析】
试题分析:根据三角形的三线合一可求得∠DAC及∠ADE的度数,根据∠EDC=90°-∠ADE即可得到答案.
∵△ABC中,AD⊥BC,AB=AC,∠BAD=30°,
∴∠DAC=∠BAD=30°,
∵AD=AE(已知),
∴∠ADE=75°
∴∠EDC=90°-∠ADE=15°.
故选C.
考点:本题主要考查了等腰三角形的性质,三角形内角和定理
点评:解答本题的关键是掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.
9、A
【解析】
先解出不等式,然后根据最小整数解为2得出关于m的不等式组,解之即可求得m的取值范围.
【详解】
解:解不等式3x﹣m+1>0,得:x>,
∵不等式有最小整数解2,
∴1≤<2,
解得:4≤m<7,
故选A.
【点睛】
本题考查了一元一次不等式的整数解,解一元一次不等式组,正确解不等式,熟练掌握一元一次不等式、一元一次不等式组的解法是解答本题的关键.
10、A
【解析】
过点A作AM⊥x轴于点M,设OA=a,通过解直角三角形找出点A的坐标,再根据四边形OACB是菱形、点F在边BC上,即可得出S△AOF=S菱形OBCA,结合菱形的面积公式即可得出a的值,进而依据点A的坐标得到k的值.
【详解】
过点A作AM⊥x轴于点M,如图所示.
设OA=a=OB,则,
在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,
∴AM=OA•sin∠AOB=a,OM=a,
∴点A的坐标为(a,a).
∵四边形OACB是菱形,S△AOF=,
∴OB×AM=,
即×a×a=39,
解得a=±,而a>0,
∴a=,即A(,6),
∵点A在反比例函数y=的图象上,
∴k=×6=1.
故选A.
【解答】
解:
【点评】
本题考查了菱形的性质、解直角三角形以及反比例函数图象上点的坐标特征,解题的关键是利用S△AOF=S菱形OBCA.
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
分析:根据题意可以列出相应的方程组,从而可以解答本题.
详解:由题意可得,,
故答案为
点睛:本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.
12、-1
【解析】
先把点(1,6)代入反比例函数y=,求出k的值,进而可得出反比例函数的解析式,再把点(m,-3)代入即可得出m的值.
【详解】
解:∵反比例函数y=的图象经过点(1,6),
∴6=,解得k=6,
∴反比例函数的解析式为y=.
∵点(m,-3)在此函数图象上上,
∴-3=,解得m=-1.
故答案为-1.
【点睛】
本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
13、(1,)或(﹣1,)
【解析】
设当⊙M与y轴相切时圆心M的坐标为(x,x+2),再根据⊙M的半径为1即可得出y的值.
【详解】
解:∵⊙M的圆心在一次函数y=x+2的图象上运动,
∴设当⊙M与y轴相切时圆心M的坐标为(x, x+2),
∵⊙M的半径为1,
∴x=1或x=−1,
当x=1时,y=,
当x=−1时,y=.
∴P点坐标为:(1, )或(−1, ).
故答案为(1, )或(−1, ).
【点睛】
本题考查了切线的性质与一次函数图象上点的坐标特征,解题的关键是熟练的掌握切线的性质与一次函数图象上点的坐标特征.
14、
【解析】
在AB上取BN=BE,连接EN,根据已知及正方形的性质利用ASA判定△ANE≌△ECP,从而得到NE=CP,在等腰直角三角形BNE中,由勾股定理即可解决问题.
【详解】
在AB上取BN=BE,连接EN,作PM⊥BC于M.
∵四边形ABCD是正方形,∴AB=BC,∠B=∠DCB=∠DCM=90°.
∵BE=BN,∠B=90°,∴∠BNE=45°,∠ANE=135°.
∵PC平分∠DCM,∴∠PCM=45°,∴∠ECP=135°.
∵AB=BC,BN=BE,∴AN=EC.
∵∠AEP=90°,∴∠AEB+∠PEC=90°.
∵∠AEB+∠NAE=90°,∴∠NAE=∠PEC,∴△ANE≌△ECP(ASA),∴NE=CP.
∵BC=3,EC=2,∴NB=BE=1,∴NE==,∴PC=.
故答案为:.
【点睛】
本题考查了正方形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.
15、x≥1且x≠3
【解析】
根据二次根式的有意义和分式有意义的条件,列出不等式求解即可.
【详解】
根据二次根式和分式有意义的条件可得:
解得:且
故答案为:且
【点睛】
考查自变量的取值范围,掌握二次根式和分式有意义的条件是解题的关键.
16、.
【解析】
根据题意画出图形,由,,根据三角形法则,即可求得的长,又由点G是△ABC的重心,根据重心的性质,即可求得.
【详解】
如图:BD是△ABC的中线,
∵,
∴=,
∵,
∴=﹣,
∵点G是△ABC的重心,
∴==﹣,
故答案为: ﹣.
【点睛】
本题考查了三角形的重心的性质:三角形的重心到三角形顶点的距离是它到对边中点的距离的2倍,本题也考查了向量的加法及其几何意义,是基础题目.
17、-1
【解析】
利用反比例函数的性质,即可得到反比例函数图象在第一、三象限,进而得出,据此可得k的取值.
【详解】
解:点、都在反比例函数的图象上,,
在每个象限内,y随着x的增大而增大,
反比例函数图象在第一、三象限,
,
的值可以取等,答案不唯一
故答案为:.
【点睛】
本题考查反比例函数图象上的点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.
三、解答题(共7小题,满分69分)
18、(1)y1=20x+540,y2=10x+1;(2)去年4月销售该配件的利润最大,最大利润为450万元.
【解析】
(1)利用待定系数法,结合图象上点的坐标求出一次函数解析式即可;
(2)根据生产每件配件的人力成本为50元,其它成本30元,以及售价销量进而求出最大利润.
【详解】
(1)利用表格得出函数关系是一次函数关系:
设y1=kx+b,
∴
解得:
∴y1=20x+540,
利用图象得出函数关系是一次函数关系:
设y2=ax+c,
∴
解得:
∴y2=10x+1.
(2)去年1至9月时,销售该配件的利润w=p1(1000﹣50﹣30﹣y1),
=(0.1x+1.1)(1000﹣50﹣30﹣20x﹣540)=﹣2x2+16x+418,
=﹣2( x﹣4)2+450,(1≤x≤9,且x取整数)
∵﹣2<0,1≤x≤9,∴当x=4时,w最大=450(万元);
去年10至12月时,销售该配件的利润w=p2(1000﹣50﹣30﹣y2)
=(﹣0.1x+2.9)(1000﹣50﹣30﹣10x﹣1),
=( x﹣29)2,(10≤x≤12,且x取整数),
∵10≤x≤12时,∴当x=10时,w最大=361(万元),
∵450>361,∴去年4月销售该配件的利润最大,最大利润为450万元.
【点睛】
此题主要考查了一次函数的应用,根据已知得出函数关系式以及利用函数增减性得出函数最值是解题关键.
19、(1)100、35;(2)补图见解析;(3)800人;(4)
【解析】
分析:(1)由共享单车人数及其百分比求得总人数m,用支付宝人数除以总人数可得其百分比n的值;
(2)总人数乘以网购人数的百分比可得其人数,用微信人数除以总人数求得其百分比即可补全两个图形;
(3)总人数乘以样本中微信人数所占百分比可得答案;
(4)列表得出所有等可能结果,从中找到这两位同学最认可的新生事物不一样的结果数,根据概率公式计算可得.
详解:(1)∵被调查的总人数m=10÷10%=100人,
∴支付宝的人数所占百分比n%=×100%=35%,即n=35,
(2)网购人数为100×15%=15人,微信对应的百分比为×100%=40%,
补全图形如下:
(3)估算全校2000名学生中,最认可“微信”这一新生事物的人数为2000×40%=800人;
(4)列表如下:
共有12种情况,这两位同学最认可的新生事物不一样的有10种,
所以这两位同学最认可的新生事物不一样的概率为.
点睛:本题考查的是用列表法或画树状图法求概率以及扇形统计图与条形统计图的知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
20、(1)CE=BD,CE⊥BD.(2)(1)中的结论仍然成立.理由见解析;(3).
【解析】
分析:(1)线段AD绕点A逆时针旋转90°得到AE,根据旋转的性质得到AD=AE,∠BAD=∠CAE,得到△BAD≌△CAE,CE=BD,∠ACE=∠B,得到∠BCE=∠BCA+∠ACE=90°,于是有CE=BD,CE⊥BD.
(2)证明的方法与(1)类似.
(3)过A作AM⊥BC于M,EN⊥AM于N,根据旋转的性质得到∠DAE=90°,AD=AE,利用等角的余角相等得到∠NAE=∠ADM,易证得Rt△AMD≌Rt△ENA,则NE=MA,由于∠ACB=45°,则AM=MC,所以MC=NE,易得四边形MCEN为矩形,得到∠DCF=90°,由此得到Rt△AMD∽Rt△DCF,得,设DC=x,MD=1-x,利用相似比可得到CF=-x2+1,再利用二次函数即可求得CF的最大值.
详解:(1)①∵AB=AC,∠BAC=90°,
∴线段AD绕点A逆时针旋转90°得到AE,
∴AD=AE,∠BAD=∠CAE,
∴△BAD≌△CAE,
∴CE=BD,∠ACE=∠B,
∴∠BCE=∠BCA+∠ACE=90°,
∴BD⊥CE;
故答案为CE=BD,CE⊥BD.
(2)(1)中的结论仍然成立.理由如下:
如图,∵线段AD绕点A逆时针旋转90°得到AE,
∴AE=AD,∠DAE=90°,
∵AB=AC,∠BAC=90°
∴∠CAE=∠BAD,
∴△ACE≌△ABD,
∴CE=BD,∠ACE=∠B,
∴∠BCE=90°,即CE⊥BD,
∴线段CE,BD之间的位置关系和数量关系分别为:CE=BD,CE⊥BD.
(3)如图3,过A作AM⊥BC于M,EN⊥AM于N,
∵线段AD绕点A逆时针旋转90°得到AE
∴∠DAE=90°,AD=AE,
∴∠NAE=∠ADM,
易证得Rt△AMD≌Rt△ENA,
∴NE=AM,
∵∠ACB=45°,
∴△AMC为等腰直角三角形,
∴AM=MC,
∴MC=NE,
∵AM⊥BC,EN⊥AM,
∴NE∥MC,
∴四边形MCEN为平行四边形,
∵∠AMC=90°,
∴四边形MCEN为矩形,
∴∠DCF=90°,
∴Rt△AMD∽Rt△DCF,
∴,
设DC=x,
∵∠ACB=45°,AC=,
∴AM=CM=1,MD=1-x,
∴,
∴CF=-x2+x=-(x-)2+,
∴当x=时有最大值,CF最大值为.
点睛:本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了等腰直角三角形的性质和三角形全等及相似的判定与性质.
21、人
【解析】
解:设原计划有x人参加了这次植树活动
依题意得:
解得 x=30人
经检验x=30是原方程式的根
实际参加了这次植树活动1.5x=45人
答实际有45人参加了这次植树活动.
22、(1)100+200x;(2)1.
【解析】
试题分析:(1)销售量=原来销售量﹣下降销售量,列式即可得到结论;
(2)根据销售量×每斤利润=总利润列出方程求解即可得到结论.
试题解析:(1)将这种水果每斤的售价降低x元,则每天的销售量是100+×20=100+200x斤;
(2)根据题意得:,解得:x=或x=1,∵每天至少售出260斤,∴100+200x≥260,∴x≥0.8,∴x=1.
答:张阿姨需将每斤的售价降低1元.
考点:1.一元二次方程的应用;2.销售问题;3.综合题.
23、(1)证明见解析(2)
【解析】
试题分析:(1)先根据四边形ABCD是矩形,得出AD∥BC,∠PDO=∠QBO,再根据O为BD的中点得出△POD≌△QOB,即可证得OP=OQ;
(2)根据已知条件得出∠A的度数,再根据AD=8cm,AB=6cm,得出BD和OD的长,再根据四边形PBQD是菱形时,利用勾股定理即可求出t的值,判断出四边形PBQD是菱形.
试题解析:(1)证明:因为四边形ABCD是矩形,
所以AD∥BC,
所以∠PDO=∠QBO,
又因为O为BD的中点,
所以OB=OD,
在△POD与△QOB中,
∠PDO=∠QBO,OB=OD,∠POD=∠QOB,
所以△POD≌△QOB,
所以OP=OQ.
(2)解:PD=8-t,
因为四边形PBQD是菱形,
所以PD=BP=8-t,
因为四边形ABCD是矩形,
所以∠A=90°,
在Rt△ABP中,
由勾股定理得:,
即,
解得:t=,
即运动时间为秒时,四边形PBQD是菱形.
考点:矩形的性质;菱形的性质;全等三角形的判断和性质勾股定理.
24、(6+2)米
【解析】
根据题意求出∠BAD=∠ADB=45°,进而根据等腰直角三角形的性质求得FD,在Rt△PEH中,利用特殊角的三角函数值分别求出BF,即可求得PG,在Rt△PCG中,继而可求出CG的长度.
【详解】
由题意可知∠BAD=∠ADB=45°,
∴FD=EF=6米,
在Rt△PEH中,
∵tanβ==,
∴BF==5,
∴PG=BD=BF+FD=5+6,
∵tanβ= ,
∴CG=(5+6)·=5+2,
∴CD=(6+2)米.
【点睛】
本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,利用三角函数的知识求解相关线段的长度.
相关试卷
这是一份2023年山东省临沂市蒙阴县中考数学二模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份山东省临沂市罗庄区、河东区、高新区三区2021-2022学年中考数学模拟预测试卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,的相反数是,规定等内容,欢迎下载使用。
这是一份2022届山东省临沂市蒙阴县重点中学中考数学模拟精编试卷含解析,共26页。试卷主要包含了下列各式计算正确的是等内容,欢迎下载使用。