|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021-2022学年山东省聊城市茌平县中考数学猜题卷含解析
    立即下载
    加入资料篮
    2021-2022学年山东省聊城市茌平县中考数学猜题卷含解析01
    2021-2022学年山东省聊城市茌平县中考数学猜题卷含解析02
    2021-2022学年山东省聊城市茌平县中考数学猜题卷含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年山东省聊城市茌平县中考数学猜题卷含解析

    展开
    这是一份2021-2022学年山东省聊城市茌平县中考数学猜题卷含解析,共22页。

    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为(  )

    A.30° B.45°
    C.90° D.135°
    2.如图,是某几何体的三视图及相关数据,则该几何体的侧面积是(  )

    A.10π B.15π C.20π D.30π
    3.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若CD=2,AB=8,则△ABD的面积是(  )

    A.6 B.8 C.10 D.12
    4.下列各式中,计算正确的是 ( )
    A. B.
    C. D.
    5.的相反数是
    A. B.2 C. D.
    6.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )

    A.0.7米 B.1.5米 C.2.2米 D.2.4米
    7.将一块直角三角板ABC按如图方式放置,其中∠ABC=30°,A、B两点分别落在直线m、n上,∠1=20°,添加下列哪一个条件可使直线m∥n( )

    A.∠2=20° B.∠2=30° C.∠2=45° D.∠2=50°
    8.某美术社团为练习素描,他们第一次用120元买了若干本相同的画册,第二次用240元在同一家商店买与上一次相同的画册,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本画册?设第一次买了x本画册,列方程正确的是( )
    A. B.
    C. D.
    9.如图1,在△ABC中,D、E分别是AB、AC的中点,将△ADE沿线段DE向下折叠,得到图1.下列关于图1的四个结论中,不一定成立的是(  )

    A.点A落在BC边的中点 B.∠B+∠1+∠C=180°
    C.△DBA是等腰三角形 D.DE∥BC
    10.下面调查中,适合采用全面调查的是(  )
    A.对南宁市市民进行“南宁地铁1号线线路”
    B.对你安宁市食品安全合格情况的调查
    C.对南宁市电视台《新闻在线》收视率的调查
    D.对你所在的班级同学的身高情况的调查
    二、填空题(共7小题,每小题3分,满分21分)
    11.不等式的解集是________________
    12.有一张三角形纸片ABC,∠A=80°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得两张纸片均为等腰三角形,则∠C的度数可以是__________.
    13.在平面直角坐标系中,如果点P坐标为(m,n),向量可以用点P的坐标表示为=(m,n),已知:=(x1,y1),=(x2,y2),如果x1•x2+y1•y2=0,那么与互相垂直,下列四组向量:①=(2,1),=(﹣1,2);②=(cos30°,tan45°),=(﹣1,sin60°);③=(﹣,﹣2),=(+,);④=(π0,2),=(2,﹣1).其中互相垂直的是______(填上所有正确答案的符号).
    14.如图,BC=6,点A为平面上一动点,且∠BAC=60°,点O为△ABC的外心,分别以AB、AC为腰向形外作等腰直角三角形△ABD与△ACE,连接BE、CD交于点P,则OP的最小值是_____

    15.含角30°的直角三角板与直线,的位置关系如图所示,已知,∠1=60°,以下三个结论中正确的是____(只填序号).
    ①AC=2BC ②△BCD为正三角形 ③AD=BD

    16.已知a+=2,求a2+=_____.
    17.一个三角形的两边长分别为3和6,第三边长是方程x2-10x+21=0的根,则三角形的周长为______________.
    三、解答题(共7小题,满分69分)
    18.(10分)如图,一位测量人员,要测量池塘的宽度 的长,他过 两点画两条相交于点 的射线,在射线上取两点 ,使 ,若测得 米,他能求出 之间的距离吗?若能,请你帮他算出来;若不能,请你帮他设计一个可行方案.

    19.(5分)已知:如图,在半径为2的扇形中,°,点C在半径OB上,AC的垂直平分线交OA于点D,交弧AB于点E,联结.

    (1)若C是半径OB中点,求的正弦值;
    (2)若E是弧AB的中点,求证:;
    (3)联结CE,当△DCE是以CD为腰的等腰三角形时,求CD的长.
    20.(8分)数学活动小组的小颖、小明和小华利用皮尺和自制的两个直角三角板测量学校旗杆MN的高度,如示意图,△ABC和△A′B′C′是他们自制的直角三角板,且△ABC≌△A′B′C′,小颖和小明分别站在旗杆的左右两侧,小颖将△ABC的直角边AC平行于地面,眼睛通过斜边AB观察,一边观察一边走动,使得A、B、M共线,此时,小华测量小颖距离旗杆的距离DN=19米,小明将△A′B′C′的直角边B′C′平行于地面,眼睛通过斜边B′A′观察,一边观察一边走动,使得B′、A′、M共线,此时,小华测量小明距离旗杆的距离EN=5米,经测量,小颖和小明的眼睛与地面的距离AD=1米,B′E=1.5米,(他们的眼睛与直角三角板顶点A,B′的距离均忽略不计),且AD、MN、B′E均与地面垂直,请你根据测量的数据,计算旗杆MN的高度.

    21.(10分)如图,某校准备给长12米,宽8米的矩形室内场地进行地面装饰,现将其划分为区域Ⅰ(菱形),区域Ⅱ(4个全等的直角三角形),剩余空白部分记为区域Ⅲ;点为矩形和菱形的对称中心,,,,为了美观,要求区域Ⅱ的面积不超过矩形面积的,若设米.





    单价(元/米2)



    (1)当时,求区域Ⅱ的面积.计划在区域Ⅰ,Ⅱ分别铺设甲,乙两款不同的深色瓷砖,区域Ⅲ铺设丙款白色瓷砖,
    ①在相同光照条件下,当场地内白色区域的面积越大,室内光线亮度越好.当为多少时,室内光线亮度最好,并求此时白色区域的面积.
    ②三种瓷砖的单价列表如下,均为正整数,若当米时,购买三款瓷砖的总费用最少,且最少费用为7200元,此时__________,__________.
    22.(10分)如图,四边形AOBC是正方形,点C的坐标是(4,0).正方形AOBC的边长为   ,点A的坐标是   .将正方形AOBC绕点O顺时针旋转45°,点A,B,C旋转后的对应点为A′,B′,C′,求点A′的坐标及旋转后的正方形与原正方形的重叠部分的面积;动点P从点O出发,沿折线OACB方向以1个单位/秒的速度匀速运动,同时,另一动点Q从点O出发,沿折线OBCA方向以2个单位/秒的速度匀速运动,运动时间为t秒,当它们相遇时同时停止运动,当△OPQ为等腰三角形时,求出t的值(直接写出结果即可).

    23.(12分)如图,在△ABC中,BC=6,AB=AC,E,F分别为AB,AC上的点(E,F不与A重合),且EF∥BC.将△AEF沿着直线EF向下翻折,得到△A′EF,再展开.
    (1)请判断四边形AEA′F的形状,并说明理由;
    (2)当四边形AEA′F是正方形,且面积是△ABC的一半时,求AE的长.

    24.(14分)如图1,已知∠DAC=90°,△ABC是等边三角形,点P为射线AD上任意一点(点P与点A不重合),连结CP,将线段CP绕点C顺时针旋转60°得到线段CQ,连结QB并延长交直线AD于点E.
    (1)如图1,猜想∠QEP=   °;
    (2)如图2,3,若当∠DAC是锐角或钝角时,其它条件不变,猜想∠QEP的度数,选取一种情况加以证明;
    (3)如图3,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的长.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    根据勾股定理求解.
    【详解】
    设小方格的边长为1,得,
    OC=
    ,AO=
    ,AC=4,
    ∵OC2+AO2==16,
    AC2=42=16,
    ∴△AOC是直角三角形,
    ∴∠AOC=90°.
    故选C.
    【点睛】
    考点:勾股定理逆定理.
    2、B
    【解析】
    由三视图可知此几何体为圆锥,∴圆锥的底面半径为3,母线长为5,
    ∵圆锥的底面周长等于圆锥的侧面展开扇形的弧长,
    ∴圆锥的底面周长=圆锥的侧面展开扇形的弧长=2πr=2π×3=6π,
    ∴圆锥的侧面积=lr=×6π×5=15π,故选B
    3、B
    【解析】
    分析:过点D作DE⊥AB于E,先求出CD的长,再根据角平分线上的点到角的两边的距离相等可得DE=CD=2,然后根据三角形的面积公式列式计算即可得解.
    详解:如图,过点D作DE⊥AB于E,

    ∵AB=8,CD=2,
    ∵AD是∠BAC的角平分线,
    ∴DE=CD=2,
    ∴△ABD的面积
    故选B.
    点睛:考查角平分线的性质,角平分线上的点到角两边的距离相等.
    4、C
    【解析】
    接利用合并同类项法则以及积的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.
    【详解】
    A、无法计算,故此选项错误;
    B、a2•a3=a5,故此选项错误;
    C、a3÷a2=a,正确;
    D、(a2b)2=a4b2,故此选项错误.
    故选C.
    【点睛】
    此题主要考查了合并同类项以及积的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.
    5、B
    【解析】
    根据相反数的性质可得结果.
    【详解】
    因为-2+2=0,所以﹣2的相反数是2,
    故选B.
    【点睛】
    本题考查求相反数,熟记相反数的性质是解题的关键 .
    6、C
    【解析】
    在直角三角形中利用勾股定理计算出直角边,即可求出小巷宽度.
    【详解】
    在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选C.

    【点睛】
    本题考查勾股定理的运用,利用梯子长度不变找到斜边是关键.
    7、D
    【解析】
    根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论.
    【详解】
    ∵直线EF∥GH,
    ∴∠2=∠ABC+∠1=30°+20°=50°,
    故选D.
    【点睛】
    本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.
    8、A
    【解析】
    分析:由设第一次买了x本资料,则设第二次买了(x+20)本资料,由等量关系:第二次比第一次每本优惠4元,即可得到方程.
    详解:设他上月买了x本笔记本,则这次买了(x+20)本,
    根据题意得:.
    故选A.
    点睛:本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程解答即可.
    9、A
    【解析】
    根据折叠的性质明确对应关系,易得∠A=∠1,DE是△ABC的中位线,所以易得B、D答案正确,D是AB中点,所以DB=DA,故C正确.
    【详解】
    根据题意可知DE是三角形ABC的中位线,所以DE∥BC;∠B+∠1+∠C=180°;∵BD=AD,∴△DBA是等腰三角形.故只有A错,BA≠CA.故选A.
    【点睛】
    主要考查了三角形的内角和外角之间的关系以及等腰三角形的性质.还涉及到翻折变换以及中位线定理的运用.
    (1)三角形的外角等于与它不相邻的两个内角和.
    (1)三角形的内角和是180度.求角的度数常常要用到“三角形的内角和是180°这一隐含的条件.通过折叠变换考查正多边形的有关知识,及学生的逻辑思维能力.解答此类题最好动手操作.
    10、D
    【解析】
    根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.
    【详解】
    A、对南宁市市民进行“南宁地铁1号线线路”适宜采用抽样调查方式;
    B、对你安宁市食品安全合格情况的调查适宜采用抽样调查方式;
    C、对南宁市电视台《新闻在线》收视率的调查适宜采用抽样调查方式;
    D、对你所在的班级同学的身高情况的调查适宜采用普查方式;
    故选D.
    【点睛】
    本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.

    二、填空题(共7小题,每小题3分,满分21分)
    11、
    【解析】
    首先去分母进而解出不等式即可.
    【详解】
    去分母得,1-2x>15
    移项得,-2x>15-1
    合并同类项得,-2x>14
    系数化为1,得x<-7.
    故答案为x<-7.
    【点睛】
    此题考查了解一元一次不等式,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.
    12、25°或40°或10°
    【解析】
    【分析】分AB=AD或AB=BD或AD=BD三种情况根据等腰三角形的性质求出∠ADB,再求出∠BDC,然后根据等腰三角形两底角相等列式计算即可得解.
    【详解】由题意知△ABD与△DBC均为等腰三角形,
    对于△ABD可能有
    ①AB=BD,此时∠ADB=∠A=80°,
    ∴∠BDC=180°-∠ADB=180°-80°=100°,
    ∠C=(180°-100°)=40°,
    ②AB=AD,此时∠ADB=(180°-∠A)=(180°-80°)=50°,
    ∴∠BDC=180°-∠ADB=180°-50°=130°,
    ∠C=(180°-130°)=25°,
    ③AD=BD,此时,∠ADB=180°-2×80°=20°,
    ∴∠BDC=180°-∠ADB=180°-20°=160°,
    ∠C=(180°-160°)=10°,
    综上所述,∠C度数可以为25°或40°或10°
    故答案为25°或40°或10°
    【点睛】本题考查了等腰三角形的性质,难点在于分情况讨论.
    13、①③④
    【解析】
    分析:根据两个向量垂直的判定方法一一判断即可;
    详解:①∵2×(−1)+1×2=0,
    ∴与垂直;
    ②∵
    ∴与不垂直.
    ③∵
    ∴与垂直.
    ④∵
    ∴与垂直.
    故答案为:①③④.
    点睛:考查平面向量,解题的关键是掌握向量垂直的定义.
    14、
    【解析】
    试题分析:如图,∵∠BAD=∠CAE=90°,∴∠DAC=∠BAE,在△DAC和△BAE中,∵AD=AB,∠DAC=∠BAE,AC=AE,∴△DAC≌△BAE(SAS),∴∠ADC=∠ABE,∴∠PDB+∠PBD=90°,∴∠DPB=90°,∴点P在以BC为直径的圆上,∵外心为O,∠BAC=60°,∴∠BOC=120°,又BC=6,∴OH=,所以OP的最小值是.故答案为.

    考点:1.三角形的外接圆与外心;2.全等三角形的判定与性质.
    15、②③
    【解析】
    根据平行线的性质以及等边三角形的性质即可求出答案.
    【详解】
    由题意可知:∠A=30°,∴AB=2BC,故①错误;
    ∵l1∥l2,∴∠CDB=∠1=60°.
    ∵∠CBD=60°,∴△BCD是等边三角形,故②正确;
    ∵△BCD是等边三角形,∴∠BCD=60°,∴∠ACD=∠A=30°,∴AD=CD=BD,故③正确.
    故答案为②③.
    【点睛】
    本题考查了平行的性质以及等边三角形的性质,解题的关键是熟练运用平行线的性质,等边三角形的性质,含30度角的直角三角形的性质,本题属于中等题型.
    16、1
    【解析】
    试题分析:∵==4,∴=4-1=1.故答案为1.
    考点:完全平方公式.
    17、2
    【解析】
    分析:首先求出方程的根,再根据三角形三边关系定理,确定第三边的长,进而求其周长.
    详解:解方程x2-10x+21=0得x1=3、x2=1,
    ∵3<第三边的边长<9,
    ∴第三边的边长为1.
    ∴这个三角形的周长是3+6+1=2.
    故答案为2.
    点睛:本题考查了解一元二次方程和三角形的三边关系.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.

    三、解答题(共7小题,满分69分)
    18、可以求出A、B之间的距离为111.6米.
    【解析】
    根据,(对顶角相等),即可判定,根据相似三角形的性质得到,即可求解.
    【详解】
    解:∵,(对顶角相等),
    ∴,
    ∴,
    ∴,
    解得米.
    所以,可以求出、之间的距离为米
    【点睛】
    考查相似三角形的应用,掌握相似三角形的判定方法和性质是解题的关键.
    19、(2);(2)详见解析;(2)当是以CD为腰的等腰三角形时,CD的长为2或.
    【解析】
    (2)先求出OCOB=2,设OD=x,得出CD=AD=OA﹣OD=2﹣x,根据勾股定理得:(2﹣x)2﹣x2=2求出x,即可得出结论;
    (2)先判断出,进而得出∠CBE=∠BCE,再判断出△OBE∽△EBC,即可得出结论;
    (3)分两种情况:①当CD=CE时,判断出四边形ADCE是菱形,得出∠OCE=90°.在Rt△OCE中,OC2=OE2﹣CE2=4﹣a2.在Rt△COD中,OC2=CD2﹣OD2=a2﹣(2﹣a)2,建立方程求解即可;
    ②当CD=DE时,判断出∠DAE=∠DEA,再判断出∠OAE=OEA,进而得出∠DEA=∠OEA,即:点D和点O重合,即可得出结论.
    【详解】
    (2)∵C是半径OB中点,∴OCOB=2.
    ∵DE是AC的垂直平分线,∴AD=CD.设OD=x,∴CD=AD=OA﹣OD=2﹣x.
    在Rt△OCD中,根据勾股定理得:(2﹣x)2﹣x2=2,∴x,∴CD,∴sin∠OCD;
    (2)如图2,连接AE,CE.
    ∵DE是AC垂直平分线,∴AE=CE.
    ∵E是弧AB的中点,∴,∴AE=BE,∴BE=CE,∴∠CBE=∠BCE.
    连接OE,∴OE=OB,∴∠OBE=∠OEB,∴∠CBE=∠BCE=∠OEB.
    ∵∠B=∠B,∴△OBE∽△EBC,∴,∴BE2=BO•BC;
    (3)△DCE是以CD为腰的等腰三角形,分两种情况讨论:
    ①当CD=CE时.
    ∵DE是AC的垂直平分线,∴AD=CD,AE=CE,∴AD=CD=CE=AE,∴四边形ADCE是菱形,∴CE∥AD,∴∠OCE=90°,设菱形的边长为a,∴OD=OA﹣AD=2﹣a.在Rt△OCE中,OC2=OE2﹣CE2=4﹣a2.在Rt△COD中,OC2=CD2﹣OD2=a2﹣(2﹣a)2,∴4﹣a2=a2﹣(2﹣a)2,∴a=﹣22(舍)或a=;∴CD=;
    ②当CD=DE时.
    ∵DE是AC垂直平分线,∴AD=CD,∴AD=DE,∴∠DAE=∠DEA.
    连接OE,∴OA=OE,∴∠OAE=∠OEA,∴∠DEA=∠OEA,∴点D和点O重合,此时,点C和点B重合,∴CD=2.
    综上所述:当△DCE是以CD为腰的等腰三角形时,CD的长为2或.

    【点睛】
    本题是圆的综合题,主要考查了勾股定理,线段垂直平分线的性质,菱形的判定和性质,锐角三角函数,作出辅助线是解答本题的关键.
    20、11米
    【解析】
    过点C作CE⊥MN于E,过点C′作C′F⊥MN于F,则EF=B′E−AD=1.5−1=0.5(m),AE=DN=19,B′F=EN=5,根据相似三角形的性质即可得到结论.
    【详解】
    解:过点C作CE⊥MN于E,过点C′作C′F⊥MN于F,

    则EF=B′E−AD=1.5−1=0.5(m),AE=DN=19,B′F=EN=5,
    ∵△ABC≌△A′B′C′,
    ∴∠MAE=∠B′MF,
    ∵∠AEM=∠B′FM=90°,
    ∴△AMF∽△MB′F,
    ∴ ,

    ∴MF= ,


    答:旗杆MN的高度约为11米.
    【点睛】
    本题考查了相似三角形的应用,正确的作出辅助线是解题的关键.
    21、(1)8m2;(2)68m2;(3) 40,8
    【解析】
    (1)根据中心对称图形性质和,,,可得,即可解当时,4个全等直角三角形的面积;
    (2)白色区域面积即是矩形面积减去一二部分的面积,分别用含x的代数式表示出菱形和四个全等直角三角形的面积,列出含有x的解析式表示白色区域面积,并化成顶点式,根据,,,求出自变量的取值范围,再根据二次函数的增减性即可解答;
    (3)计算出x=2时各部分面积以及用含m、n的代数式表示出费用,因为m,n均为正整数,解得m=40,n=8.
    【详解】
    (1) ∵为长方形和菱形的对称中心,,∴
    ∵,,∴
    ∴当时,,
    (2)∵,
    ∴-,
    ∵,,
    ∴解不等式组得,
    ∵,结合图像,当时,随的增大而减小.
    ∴当时, 取得最大值为
    (3)∵当时,SⅠ=4x2=16 m2,=12 m2,=68m2,总费用:16×2m+12×5n+68×2m=7200,化简得:5n+14m=600,因为m,n均为正整数,解得m=40,n=8.
    【点睛】
    本题考查中心对称图形性质,菱形、直角三角形的面积计算,二次函数的最值问题,解题关键是用含x的二次函数解析式表示出白色区面积.
    22、(1)4,;(2)旋转后的正方形与原正方形的重叠部分的面积为;(3).
    【解析】
    (1)连接AB,根据△OCA为等腰三角形可得AD=OD的长,从而得出点A的坐标,则得出正方形AOBC的面积;
    (2)根据旋转的性质可得OA′的长,从而得出A′C,A′E,再求出面积即可;
    (3)根据P、Q点在不同的线段上运动情况,可分为三种列式①当点P、Q分别在OA、OB时,②当点P在OA上,点Q在BC上时,③当点P、Q在AC上时,可方程得出t.
    【详解】
    解:(1)连接AB,与OC交于点D,
    四边形是正方形,
    ∴△OCA为等腰Rt△,
    ∴AD=OD=OC=2,
    ∴点A的坐标为.

    4,.
    (2)如图
    ∵ 四边形是正方形,
    ∴,.
    ∵ 将正方形绕点顺时针旋转,
    ∴ 点落在轴上.
    ∴.
    ∴ 点的坐标为.
    ∵,
    ∴.
    ∵ 四边形,是正方形,
    ∴,.
    ∴,.
    ∴.
    ∴.
    ∵,

    ∴ .
    ∴旋转后的正方形与原正方形的重叠部分的面积为.
    (3)设t秒后两点相遇,3t=16,∴t=
    ①当点P、Q分别在OA、OB时,
    ∵,OP=t,OQ=2t
    ∴不能为等腰三角形
    ②当点P在OA上,点Q在BC上时如图2,

    当OQ=QP,QM为OP的垂直平分线,
    OP=2OM=2BQ,OP=t,BQ=2t-4,
    t=2(2t-4),
    解得:t=.
    ③当点P、Q在AC上时,
    不能为等腰三角形
    综上所述,当时是等腰三角形
    【点睛】
    此题考查了正方形的性质,等腰三角形的判定以及旋转的性质,是中考压轴题,综合性较强,难度较大.
    23、(1)四边形AEA′F为菱形.理由见解析;(2)1.
    【解析】
    (1)先证明AE=AF,再根据折叠的性质得AE=A′E,AF=A′F,然后根据菱形的判定方法可判断四边形AEA′F为菱形;(2)四先利用四边形AEA′F是正方形得到∠A=90°,则AB=AC=BC=6,然后利用正方形AEA′F的面积是△ABC的一半得到AE2=••6•6,然后利用算术平方根的定义求AE即可.
    【详解】
    (1)四边形AEA′F为菱形.
    理由如下:
    ∵AB=AC,
    ∴∠B=∠C,
    ∵EF∥BC,
    ∴∠AEF=∠B,∠AFE=∠C,
    ∴∠AEF=∠AFE,
    ∴AE=AF,
    ∵△AEF沿着直线EF向下翻折,得到△A′EF,
    ∴AE=A′E,AF=A′F,
    ∴AE=A′E=AF=A′F,
    ∴四边形AEA′F为菱形;
    (2)∵四边形AEA′F是正方形,
    ∴∠A=90°,
    ∴△ABC为等腰直角三角形,
    ∴AB=AC=BC=×6=6,
    ∵正方形AEA′F的面积是△ABC的一半,
    ∴AE2=••6•6,
    ∴AE=1.
    【点睛】
    本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
    24、(1)∠QEP=60°;(2)∠QEP=60°,证明详见解析;(3)
    【解析】
    (1)如图1,先根据旋转的性质和等边三角形的性质得出∠PCA=∠QCB,进而可利用SAS证明△CQB≌△CPA,进而得∠CQB=∠CPA,再在△PEM和△CQM中利用三角形的内角和定理即可求得∠QEP=∠QCP,从而完成猜想;
    (2)以∠DAC是锐角为例,如图2,仿(1)的证明思路利用SAS证明△ACP≌△BCQ,可得∠APC=∠Q,进一步即可证得结论;
    (3)仿(2)可证明△ACP≌△BCQ,于是AP=BQ,再求出AP的长即可,作CH⊥AD于H,如图3,易证∠APC=30°,△ACH为等腰直角三角形,由AC=4可求得CH、PH的长,于是AP可得,问题即得解决.
    【详解】
    解:(1)∠QEP=60°;
    证明:连接PQ,如图1,由题意得:PC=CQ,且∠PCQ=60°,
    ∵△ABC是等边三角形,∴∠ACB=60°,∴∠PCA=∠QCB,
    则在△CPA和△CQB中,

    ∴△CQB≌△CPA(SAS),
    ∴∠CQB=∠CPA,
    又因为△PEM和△CQM中,∠EMP=∠CMQ,
    ∴∠QEP=∠QCP=60°.
    故答案为60;

    (2)∠QEP=60°.以∠DAC是锐角为例.
    证明:如图2,∵△ABC是等边三角形,
    ∴AC=BC,∠ACB=60°,
    ∵线段CP绕点C顺时针旋转60°得到线段CQ,
    ∴CP=CQ,∠PCQ=60°,
    ∴∠ACB+∠BCP=∠BCP+∠PCQ,
    即∠ACP=∠BCQ,
    在△ACP和△BCQ中,

    ∴△ACP≌△BCQ(SAS),
    ∴∠APC=∠Q,
    ∵∠1=∠2,
    ∴∠QEP=∠PCQ=60°; 

    (3)连结CQ,作CH⊥AD于H,如图3,
    与(2)一样可证明△ACP≌△BCQ,∴AP=BQ,
    ∵∠DAC=135°,∠ACP=15°,
    ∴∠APC=30°,∠CAH=45°,
    ∴△ACH为等腰直角三角形,
    ∴AH=CH=AC=×4=,
    在Rt△PHC中,PH=CH=,
    ∴PA=PH−AH=-,
    ∴BQ=−.
    【点睛】
    本题考查了等边三角形的性质、旋转的性质、全等三角形的判定和性质、等腰直角三角形的性质和有关计算、30°角的直角三角形的性质等知识,涉及的知识点多、综合性强,灵活应用全等三角形的判定和性质、熟练掌握旋转的性质和相关图形的性质是解题的关键.

    相关试卷

    山东省费县2021-2022学年中考数学猜题卷含解析: 这是一份山东省费县2021-2022学年中考数学猜题卷含解析,共22页。试卷主要包含了图中三视图对应的正三棱柱是等内容,欢迎下载使用。

    2022年山东省聊城市茌平县中考数学全真模拟试题含解析: 这是一份2022年山东省聊城市茌平县中考数学全真模拟试题含解析,共17页。试卷主要包含了计算36÷等内容,欢迎下载使用。

    2021-2022学年山东省王浩屯中学中考数学猜题卷含解析: 这是一份2021-2022学年山东省王浩屯中学中考数学猜题卷含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map