2021-2022学年内蒙古鄂尔多斯市准格尔旗重点中学中考押题数学预测卷含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.函数y=中自变量x的取值范围是( )
A.x≥-1且x≠1 B.x≥-1 C.x≠1 D.-1≤x<1
2.已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是( )
A. B. C. D
3.纳米是一种长度单位,1纳米=10-9米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示该种花粉的直径为( )
A.米 B.米 C.米 D.米
4.如图,数轴上的四个点A,B,C,D对应的数为整数,且AB=BC=CD=1,若|a|+|b|=2,则原点的位置可能是( )
A.A或B B.B或C C.C或D D.D或A
5.如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE,点P是对角线AC上的一个动点,则PE+PD的最小值是( )
A. B. C.9 D.
6.下列等式从左到右的变形,属于因式分解的是
A.8a2b=2a·4ab B.-ab3-2ab2-ab=-ab(b2+2b)
C.4x2+8x-4=4x D.4my-2=2(2my-1)
7.如图:已知AB⊥BC,垂足为B,AB=3.5,点P是射线BC上的动点,则线段AP的长不可能是( )
A.3 B.3.5 C.4 D.5
8.如图,线段AB两个端点的坐标分别为A(2,2)、B(3,1),以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,则端点C的坐标分别为( )
A.(4,4) B.(3,3) C.(3,1) D.(4,1)
9.如图,平行四边形ABCD的周长为12,∠A=60°,设边AB的长为x,四边形ABCD的面积为y,则下列图象中,能表示y与x函数关系的图象大致是( )
A. B. C. D.
10.将抛物线向右平移 1 个单位长度,再向下平移 3 个单位长度,所得的抛物线的函数表达式为( )
A. B.
C. D.
11.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E给好落在AB的延长线上,连接AD,下列结论不一定正确的是( )
A.AD∥BC B.∠DAC=∠E C.BC⊥DE D.AD+BC=AE
12.如图是由若干个相同的小正方体搭成的一个几何体的主视图和俯视图,则所需的小正方体的个数最少是( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,在△ABC中,AB=3+,∠B=45°,∠C=105°,点D、E、F分别在AC、BC、AB上,且四边形ADEF为菱形,若点P是AE上一个动点,则PF+PB的最小值为_____.
14.已知x1,x2是方程x2+6x+3=0的两实数根,则的值为_____.
15.如图,AB是⊙O的弦,点C在过点B的切线上,且OC⊥OA,OC交AB于点P,已知∠OAB=22°,则∠OCB=__________.
16.如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.
(1)AB的长等于____;
(2)在△ABC的内部有一点P,满足S△PABS△PBCS△PCA =1:2:3,请在如图所示的网格中,用无刻度的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明)_______
17.如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是_______.
18.分解因式=________,=__________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)计算:(π﹣3.14)0﹣2﹣|﹣3|.
20.(6分)从广州去某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.求普通列车的行驶路程;若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.
21.(6分)某市政府大力支持大学生创业.李明在政府的扶持下投资销售一种进价为20元的护眼台灯.销售过程中发现,每月销售量Y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+1.设李明每月获得利润为W(元),当销售单价定为多少元时,每月获得利润最大?根据物价部门规定,这种护眼台灯不得高于32元,如果李明想要每月获得的利润2000元,那么销售单价应定为多少元?
22.(8分)为了弘扬学生爱国主义精神,充分展现新时期青少年良好的思想道德素质和精神风貌,丰富学生的校园生活,陶冶师生的情操,某校举办了“中国梦•爱国情•成才志”中华经典诗文诵读比赛.九(1)班通过内部初选,选出了丽丽和张强两位同学,但学校规定每班只有1个名额,经过老师与同学们商量,用所学的概率知识设计摸球游戏决定谁去,设计的游戏规则如下:在A、B两个不透明的箱子分别放入黄色和白色两种除颜色外均相同的球,其中A箱中放置3个黄球和2个白球;B箱中放置1个黄球,3个白球,丽丽从A箱中摸一个球,张强从B箱摸一个球进行试验,若两人摸出的两球都是黄色,则丽丽去;若两人摸出的两球都是白色,则张强去;若两人摸出球颜色不一样,则放回重复以上动作,直到分出胜负为止.
根据以上规则回答下列问题:
(1)求一次性摸出一个黄球和一个白球的概率;
(2)判断该游戏是否公平?并说明理由.
23.(8分)关于x的一元二次方程mx2﹣(2m﹣3)x+(m﹣1)=0有两个实数根.求m的取值范围;若m为正整数,求此方程的根.
24.(10分)某市为了解市民对已闭幕的某一博览会的总体印象,利用最新引进的“计算机辅助电话访问系统”(简称CATI系统),采取电脑随机抽样的方式,对本市年龄在16~65岁之间的居民,进行了400个电话抽样调查.并根据每个年龄段的抽查人数和该年龄段对博览会总体印象感到满意的人数绘制了下面的图(1)和图(1)(部分)
根据上图提供的信息回答下列问题:
(1)被抽查的居民中,人数最多的年龄段是 岁;
(1)已知被抽查的400人中有83%的人对博览会总体印象感到满意,请你求出31~40岁年龄段的满意人数,并补全图1.
注:某年龄段的满意率=该年龄段满意人数÷该年龄段被抽查人数×100%.
25.(10分)有A,B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和1.B 布袋中有三个完全相同的小球,分别标有数字﹣1,﹣1和﹣2.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y).
(1)用列表或画树状图的方法写出点Q的所有可能坐标;
(1)求点Q落在直线y=﹣x﹣1上的概率.
26.(12分)已知关于 x 的一元二次方程 x2﹣2(k﹣1)x+k(k+2)=0 有两个不相等的实数根.求 k 的取值范围;写出一个满足条件的 k 的值,并求此时方程的根.
27.(12分)如图,四边形ABCD为平行四边形,∠BAD的角平分线AF交CD于点E,交BC的延长线于点F.
(1)求证:BF=CD;
(2)连接BE,若BE⊥AF,∠BFA=60°,BE=,求平行四边形ABCD的周长.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
分析:根据分式的分母不为0;偶次根式被开方数大于或等于0;当一个式子中同时出现这两点时,应该是取让两个条件都满足的公共部分.
详解:根据题意得到:,
解得x≥-1且x≠1,
故选A.
点睛:本题考查了函数自变量的取值范围问题,判断一个式子是否有意义,应考虑分母上若有字母,字母的取值不能使分母为零,二次根号下字母的取值应使被开方数为非负数.易错易混点:学生易对二次根式的非负性和分母不等于0混淆.
2、D
【解析】
先根据三角形的周长公式求出函数关系式,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出x的取值范围,然后选择即可.
【详解】
由题意得,2x+y=10,
所以,y=-2x+10,
由三角形的三边关系得,,
解不等式①得,x>2.5,
解不等式②的,x<5,
所以,不等式组的解集是2.5<x<5,
正确反映y与x之间函数关系的图象是D选项图象.
故选:D.
3、C
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
35000纳米=35000×10-9米=3.5×10-5米.
故选C.
【点睛】
此题主要考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
4、B
【解析】
根据AB=BC=CD=1,|a|+|b|=2,分四种情况进行讨论判断即可.
【详解】
∵AB=BC=CD=1,
∴当点A为原点时,|a|+|b|>2,不合题意;
当点B为原点时,|a|+|b|=2,符合题意;
当点C为原点时,|a|+|b|=2,符合题意;
当点D为原点时,|a|+|b|>2,不合题意;
故选:B.
【点睛】
此题主要考查了数轴以及绝对值,解题时注意:数轴上某个数与原点的距离叫做这个数的绝对值.
5、A
【解析】
解:如图,连接BE,设BE与AC交于点P′,∵四边形ABCD是正方形,∴点B与D关于AC对称,∴P′D=P′B,∴P′D+P′E=P′B+P′E=BE最小.即P在AC与BE的交点上时,PD+PE最小,为BE的长度.∵直角△CBE中,∠BCE=90°,BC=9,CE=CD=3,∴BE==.故选A.
点睛:此题考查了轴对称﹣﹣最短路线问题,正方形的性质,要灵活运用对称性解决此类问题.找出P点位置是解题的关键.
6、D
【解析】
根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.
【详解】
解:A、是整式的乘法,故A不符合题意;
B、没把一个多项式转化成几个整式积的形式,故B不符合题意;
C、没把一个多项式转化成几个整式积的形式,故C不符合题意;
D、把一个多项式转化成几个整式积的形式,故D符合题意;
故选D.
【点睛】
本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.
7、A
【解析】
根据直线外一点和直线上点的连线中,垂线段最短的性质,可得答案.
【详解】
解:由AB⊥BC,垂足为B,AB=3.5,点P是射线BC上的动点,得
AP≥AB,
AP≥3.5,
故选:A.
【点睛】
本题考查垂线段最短的性质,解题关键是利用垂线段的性质.
8、A
【解析】
利用位似图形的性质结合对应点坐标与位似比的关系得出C点坐标.
【详解】
∵以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,
∴A点与C点是对应点,
∵C点的对应点A的坐标为(2,2),位似比为1:2,
∴点C的坐标为:(4,4)
故选A.
【点睛】
本题考查了位似变换,正确把握位似比与对应点坐标的关系是解题关键.
9、C
【解析】
过点B作BE⊥AD于E,构建直角△ABE,通过解该直角三角形求得BE的长度,然后利用平行四边形的面积公式列出函数关系式,结合函数关系式找到对应的图像.
【详解】
如图,过点B作BE⊥AD于E.∵∠A=60°,设AB边的长为x,∴BE=AB∙sin60°=x.∵平行四边形ABCD的周长为12,∴AB=(12-2x)=6-x,∴y=AD∙BE=(6-x)×x=﹣(0≤x≤6).则该函数图像是一开口向下的抛物线的一部分,观察选项,C符合题意.故选C.
【点睛】
本题考查了二次函数的图像,根据题意求出正确的函数关系式是解题的关键.
10、A
【解析】
根据二次函数的平移规律即可得出.
【详解】
解:向右平移 1 个单位长度,再向下平移 3 个单位长度,所得的抛物线的函数表达式为
故答案为:A.
【点睛】
本题考查了二次函数的平移,解题的关键是熟知二次函数的平移规律.
11、C
【解析】
利用旋转的性质得BA=BD,BC=BE,∠ABD=∠CBE=60°,∠C=∠E,再通过判断△ABD为等边三角形得到AD=AB,∠BAD=60°,则根据平行线的性质可判断AD∥BC,从而得到∠DAC=∠C,于是可判断∠DAC=∠E,接着利用AD=AB,BE=BC可判断AD+BC=AE,利用∠CBE=60°,由于∠E的度数不确定,所以不能判定BC⊥DE.
【详解】
∵△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB的延长线上,
∴BA=BD,BC=BE,∠ABD=∠CBE=60°,∠C=∠E,
∴△ABD为等边三角形,
∴AD=AB,∠BAD=60°,
∵∠BAD=∠EBC,
∴AD∥BC,
∴∠DAC=∠C,
∴∠DAC=∠E,
∵AE=AB+BE,
而AD=AB,BE=BC,
∴AD+BC=AE,
∵∠CBE=60°,
∴只有当∠E=30°时,BC⊥DE.
故选C.
【点睛】
本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的性质.
12、B
【解析】
主视图、俯视图是分别从物体正面、上面看,所得到的图形.
【详解】
综合主视图和俯视图,底层最少有个小立方体,第二层最少有个小立方体,因此搭成这个几何体的小正方体的个数最少是个.
故选:B.
【点睛】
此题考查由三视图判断几何体,解题关键在于识别图形
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
如图,连接OD,BD,作DH⊥AB于H,EG⊥AB于G.由四边形ADEF是菱形,推出F,D关于直线AE对称,推出PF=PD,推出PF+PB=PA+PB,由PD+PB≥BD,推出PF+PB的最小值是线段BD的长.
【详解】
如图,连接OD,BD,作DH⊥AB于H,EG⊥AB于G.
∵四边形ADEF是菱形,
∴F,D关于直线AE对称,
∴PF=PD,
∴PF+PB=PA+PB,
∵PD+PB≥BD,
∴PF+PB的最小值是线段BD的长,
∵∠CAB=180°-105°-45°=30°,设AF=EF=AD=x,则DH=EG=x,FG=x,
∵∠EGB=45°,EG⊥BG,
∴EG=BG=x,
∴x+x+x=3+,
∴x=2,
∴DH=1,BH=3,
∴BD==,
∴PF+PB的最小值为,
故答案为.
【点睛】
本题考查轴对称-最短问题,菱形的性质等知识,解题的关键是学会用转化的思想思考问题,学会利用轴对称解决最短问题.
14、1.
【解析】
试题分析:∵,是方程的两实数根,∴由韦达定理,知,,∴===1,即的值是1.故答案为1.
考点:根与系数的关系.
15、44°
【解析】
首先连接OB,由点C在过点B的切线上,且OC⊥OA,根据等角的余角相等,易证得∠CBP=∠CPB,利用等腰三角形的性质解答即可.
【详解】
连接OB,
∵BC是⊙O的切线,
∴OB⊥BC,
∴∠OBA+∠CBP=90°,
∵OC⊥OA,
∴∠A+∠APO=90°,
∵OA=OB,∠OAB=22°,
∴∠OAB=∠OBA=22°,
∴∠APO=∠CBP=68°,
∵∠APO=∠CPB,
∴∠CPB=∠ABP=68°,
∴∠OCB=180°-68°-68°=44°,
故答案为44°
【点睛】
此题考查了切线的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用.
16、; 答案见解析.
【解析】
(1)AB==.
故答案为.
(2)如图AC与网格相交,得到点D、E,取格点F,连接FB并且延长,与网格相交,得到M,N,G.连接DN,EM,DG,DN与EM相交于点P,点P即为所求.
理由:平行四边形ABME的面积:平行四边形CDNB的面积:平行四边形DEMG的面积=1:2:1,△PAB的面积=平行四边形ABME的面积,△PBC的面积=平行四边形CDNB的面积,△PAC的面积=△PNG的面积=△DGN的面积=平行四边形DEMG的面积,∴S△PAB:S△PBC:S△PCA=1:2:1.
17、2
【解析】
分析:∵由主视图得出长方体的长是6,宽是2,这个几何体的体积是16,
∴设高为h,则6×2×h=16,解得:h=1.
∴它的表面积是:2×1×2+2×6×2+1×6×2=2.
18、
【解析】
此题考查因式分解
答案
点评:利用提公因式、平方差公式、完全平方公式分解因式
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、﹣1.
【解析】
本题涉及零指数幂、负指数幂、二次根式化简和特殊角的三角函数值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.
【详解】
原式
=1﹣3+4﹣3,
=﹣1.
【点睛】
本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.
20、(1)520千米;(2)300千米/时.
【解析】
试题分析:(1)根据普通列车的行驶路程=高铁的行驶路程×1.3得出答案;(2)首先设普通列车的平均速度为x千米/时,则高铁平均速度为2.5x千米/时,根据题意列出分式方程求出未知数x的值.
试题解析:(1)依题意可得,普通列车的行驶路程为400×1.3=520(千米)
(2)设普通列车的平均速度为x千米/时,则高铁平均速度为2.5x千米/时
依题意有:=3 解得:x=120
经检验:x=120分式方程的解且符合题意 高铁平均速度:2.5×120=300千米/时
答:高铁平均速度为 2.5×120=300千米/时.
考点:分式方程的应用.
21、 (1)35元;(2)30元.
【解析】
(1)由题意得,每月销售量与销售单价之间的关系可近似看作一次函数,利润=(定价-进价)×销售量,从而列出关系式,利用配方法得出最值;
(2)令w=2000,然后解一元二次方程,从而求出销售单价.
【详解】
解:(1)由题意,得:
W=(x-20)×y
=(x-20)(-10x+1)
=-10x2+700x-10000
=-10(x-35)2+2250
当x=35时,W取得最大值,最大值为2250,
答:当销售单价定为35元时,每月可获得最大利润为2250元;
(2)由题意,得:,
解得:,,
销售单价不得高于32元,
销售单价应定为30元.
答:李明想要每月获得2000元的利润,销售单价应定为30元.
【点睛】
本题考查二次函数的性质及其应用,还考查抛物线的基本性质,另外将实际问题转化为求函数最值问题,从而来解决实际问题.
22、 (1);(2)不公平,理由见解析.
【解析】
(1)画树状图列出所有等可能结果数,找到摸出一个黄球和一个白球的结果数,根据概率公式可得答案;
(2)结合(1)种树状图根据概率公式计算出两人获胜的概率,比较大小即可判断.
【详解】
(1)画树状图如下:
由树状图可知共有20种等可能结果,其中一次性摸出一个黄球和一个白球的有11种结果,
∴一次性摸出一个黄球和一个白球的概率为;
(2)不公平,
由(1)种树状图可知,丽丽去的概率为,张强去的概率为=,
∵,
∴该游戏不公平.
【点睛】
本题考查了列表法与树状图法,解题的关键是根据题意画出树状图.
23、(1)且;(2),.
【解析】
(1)根据一元二次方程的定义和判别式的意义得到m≠0且≥0,然后求出两个不等式的公共部分即可;
(2)利用m的范围可确定m=1,则原方程化为x2+x=0,然后利用因式分解法解方程.
【详解】
(1)∵
.
解得且.
(2)∵为正整数,
∴.
∴原方程为.
解得,.
【点睛】
考查一元二次方程根的判别式,
当时,方程有两个不相等的实数根.
当时,方程有两个相等的实数根.
当时,方程没有实数根.
24、(1)11~30;(1)31~40岁年龄段的满意人数为66人,图见解析;
【解析】
(1)取扇形统计图中所占百分比最大的年龄段即可;
(1)先求出总体感到满意的总人数,然后减去其它年龄段的人数即可,再补全条形图.
【详解】
(1)由扇形统计图可得11~30岁的人数所占百分比最大为39%,
所以,人数最多的年龄段是11~30岁;
(1)根据题意,被调查的人中,总体印象感到满意的有:400×83%=331人,
31~40岁年龄段的满意人数为:331﹣54﹣116﹣53﹣14﹣9=331﹣116=66人,
补全统计图如图.
【点睛】
本题考点:条形统计图与扇形统计图.
25、 (1)见解析;(1)
【解析】
试题分析:先用列表法写出点Q的所有可能坐标,再根据概率公式求解即可.
(1)由题意得
1
1
-1
(1,-1)
(1,-1)
-1
(1,-1)
(1,-1)
-2
(1,-2)
(1,-2)
(1)共有6种等可能情况,符合条件的有1种
P(点Q在直线y=−x−1上)=.
考点:概率公式
点评:解题的关键是熟练掌握概率公式:概率=所求情况数与总情况数的比值.
26、方程的根
【解析】
(1)根据方程的系数结合根的判别式,即可得出关于k的一元一次不等式,解之即可得出k的取值范围;
(1)取k=0,再利用分解因式法解一元二次方程,即可求出方程的根.
【详解】
(1)∵关于x的一元二次方程x1﹣1(k﹣a)x+k(k+1)=0有两个不相等的实数根,
∴△=[﹣1(k﹣1)]1﹣4k(k﹣1)=﹣16k+4>0,
解得:k< .
(1)当k=0时,原方程为x1+1x=x(x+1)=0,
解得:x1=0,x1=﹣1.
∴当k=0时,方程的根为0和﹣1.
【点睛】
本题考查了根的判别式以及因式分解法解一元二次方程,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(1)取k=0,再利用分解因式法解方程.
27、(1)证明见解析;(2)12
【解析】
(1)由平行四边形的性质和角平分线得出∠BAF=∠BFA,即可得出AB=BF;
(2)由题意可证△ABF为等边三角形,点E是AF的中点. 可求EF、BF的值,即可得解.
【详解】
解:(1)证明:∵ 四边形ABCD为平行四边形,
∴ AB=CD,∠FAD=∠AFB
又∵ AF平分∠BAD,
∴ ∠FAD=∠FAB
∴ ∠AFB=∠FAB
∴ AB=BF
∴ BF=CD
(2)解:由题意可证△ABF为等边三角形,点E是AF的中点
在Rt△BEF中,∠BFA=60°,BE=,
可求EF=2,BF=4
∴ 平行四边形ABCD的周长为12
如皋实验初中重点中学2021-2022学年中考押题数学预测卷含解析: 这是一份如皋实验初中重点中学2021-2022学年中考押题数学预测卷含解析,共18页。试卷主要包含了下列方程中,两根之和为2的是等内容,欢迎下载使用。
2021-2022学年内蒙古自治区鄂尔多斯市中考押题数学预测卷含解析: 这是一份2021-2022学年内蒙古自治区鄂尔多斯市中考押题数学预测卷含解析,共26页。试卷主要包含了考生要认真填写考场号和座位序号,有以下图形,下面运算正确的是,下列说法正确的是等内容,欢迎下载使用。
2021-2022学年临汾市重点中学中考押题数学预测卷含解析: 这是一份2021-2022学年临汾市重点中学中考押题数学预测卷含解析,共16页。试卷主要包含了下列运算结果正确的是等内容,欢迎下载使用。