2021-2022学年内蒙古呼和浩特实验中学中考数学全真模拟试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”.将半径为5的“等边扇形”围成一个圆锥,则圆锥的侧面积为( )
A. B.π C.50 D.50π
2.如图 1 是某生活小区的音乐喷泉, 水流在各个方向上沿形状相同的抛物线路径落下,其中一个喷水管喷水的最大高度为 3 m,此时距喷水管的水平距离为 1 m,在如图 2 所示的坐标系中,该喷水管水流喷出的高度(m)与水平距离(m)之间的函数关系式是( )
A. B.
C. D.
3.若a与﹣3互为倒数,则a=( )
A.3 B.﹣3 C. D.-
4.如图,在平面直角坐标系xOy中,点A从出发,绕点O顺时针旋转一周,则点A不经过( )
A.点M B.点N C.点P D.点Q
5.已知,如图,AB//CD,∠DCF=100°,则∠AEF的度数为 ( )
A.120° B.110° C.100° D.80°
6.下列图形中,既是中心对称,又是轴对称的是( )
A. B. C. D.
7.如图,两个一次函数图象的交点坐标为,则关于x,y的方程组的解为( )
A. B. C. D.
8.计算-5+1的结果为( )
A.-6 B.-4 C.4 D.6
9.如图所示是由相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上 小正方体的个数,那么该几何体的主视图是( )
A. B. C. D.
10.不等式组的解集是( )
A.﹣1≤x≤4 B.x<﹣1或x≥4 C.﹣1<x<4 D.﹣1<x≤4
11.某校九年级(1)班学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了1980张相片,如果全班有x名学生,根据题意,列出方程为
A. B.x(x+1)=1980
C.2x(x+1)=1980 D.x(x-1)=1980
12.如图,已知,用尺规作图作.第一步的作法以点为圆心,任意长为半径画弧,分别交,于点,第二步的作法是( )
A.以点为圆心,长为半径画弧,与第1步所画的弧相交于点
B.以点为圆心,长为半径画弧,与第1步所画的弧相交于点
C.以点为圆心,长为半径画弧,与第1步所画的弧相交于点
D.以点为圆心,长为半径画弧,与第1步所画的弧相交于点
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.分解因式6xy2-9x2y-y3 = _____________.
14.如图,AB是⊙O的直径,CD是弦,CD⊥AB于点E,若⊙O的半径是5,CD=8,则AE=______.
15.如图,在矩形纸片ABCD中,AB=2cm,点E在BC上,且AE=CE.若将纸片沿AE折叠,点B恰好与AC上的点B1重合,则AC=_____cm.
16.同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是 .
17.某航空公司规定,乘客所携带行李的重量x(kg)与运费y(元)满足如图所示的函数图象,那么每位乘客最多可免费携带____kg的行李.
18.如图,BC=6,点A为平面上一动点,且∠BAC=60°,点O为△ABC的外心,分别以AB、AC为腰向形外作等腰直角三角形△ABD与△ACE,连接BE、CD交于点P,则OP的最小值是_____
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)某校七年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题中选择一个,七年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.
(1)将上面的条形统计图补充完整;
(2)在扇形统计图中,选择“爱国”主题所对应的圆心角是多少度?
(3)如果该校七年级共有1200名考生,请估计选择以“友善”为主题的七年级学生有多少名?
20.(6分)如图,⊙O的直径DF与弦AB交于点E,C为⊙O外一点,CB⊥AB,G是直线CD上一点,∠ADG=∠ABD.
求证:AD•CE=DE•DF;
说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路过程写出来(要求至少写3步);
(2)在你经历说明(1)的过程之后,可以从下列①、②、③中选取一个补充或更换已知条件,完成你的证明.
①∠CDB=∠CEB;
②AD∥EC;
③∠DEC=∠ADF,且∠CDE=90°.
21.(6分)(本题满分8分)如图,四边形ABCD中,,E是边CD的中点,连接BE并延长与AD的延长线相较于点F.
(1)求证:四边形BDFC是平行四边形;
(2)若△BCD是等腰三角形,求四边形BDFC的面积.
22.(8分)解分式方程:=1
23.(8分)如图, 二次函数的图象与 x 轴交于和两点,与 y 轴交于点 C,一次函数的图象过点 A、C.
(1)求二次函数的表达式
(2)根据函数图象直接写出使二次函数值大于一次函数值的自变量 x 的取值范围.
24.(10分)如图,一次函数y=﹣x+6的图象分别交y轴、x轴交于点A、B,点P从点B出发,沿射线BA以每秒1个单位的速度出发,设点P的运动时间为t秒.
(1)点P在运动过程中,若某一时刻,△OPA的面积为6,求此时P的坐标;
(2)在整个运动过程中,当t为何值时,△AOP为等腰三角形?(只需写出t的值,无需解答过程)
25.(10分)观察下列算式:
① 1 × 3 - 22 =" 3" - 4 = -1
② 2 × 4 - 32 =" 8" - 9 = -1
③3 × 5 - 42 =" 15" - 16 = -1
④
……
(1)请你按以上规律写出第4个算式;
(2)把这个规律用含字母的式子表示出来;
(3)你认为(2)中所写出的式子一定成立吗?并说明理由.
26.(12分)已知:AB为⊙O上一点,如图,,,BH与⊙O相切于点B,过点C作BH的平行线交AB于点E.
(1)求CE的长;
(2)延长CE到F,使,连结BF并延长BF交⊙O于点G,求BG的长;
(3)在(2)的条件下,连结GC并延长GC交BH于点D,求证:
27.(12分)如图,为了测量建筑物AB的高度,在D处树立标杆CD,标杆的高是2m,在DB上选取观测点E、F,从E测得标杆和建筑物的顶部C、A的仰角分别为58°、45°.从F测得C、A的仰角分别为22°、70°.求建筑物AB的高度(精确到0.1m).(参考数据:tan22°≈0.40,tan58°≈1.60,tan70°≈2.1.)
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
根据新定义得到扇形的弧长为5,然后根据扇形的面积公式求解.
【详解】
解:圆锥的侧面积=•5•5=.
故选A.
【点睛】
本题考查圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.
2、D
【解析】
根据图象可设二次函数的顶点式,再将点(0,0)代入即可.
【详解】
解:根据图象,设函数解析式为
由图象可知,顶点为(1,3)
∴,
将点(0,0)代入得
解得
∴
故答案为:D.
【点睛】
本题考查了是根据实际抛物线形,求函数解析式,解题的关键是正确设出函数解析式.
3、D
【解析】
试题分析:根据乘积是1的两个数互为倒数,可得3a=1,
∴a=,
故选C.
考点:倒数.
4、C
【解析】
根据旋转的性质:对应点到旋转中心的距离相等,逐一判断即可.
【详解】
解:连接OA、OM、ON、OP,根据旋转的性质,点A的对应点到旋转中心的距离与OA的长度应相等
根据网格线和勾股定理可得:OA=,OM=,ON=,OP=,OQ=5
∵OA=OM=ON=OQ≠OP
∴则点A不经过点P
故选C.
【点睛】
此题考查的是旋转的性质和勾股定理,掌握旋转的性质:对应点到旋转中心的距离相等和用勾股定理求线段的长是解决此题的关键.
5、D
【解析】
先利用邻补角得到∠DCE=80°,然后根据平行线的性质求解.
【详解】
∵∠DCF=100°,
∴∠DCE=80°,
∵AB∥CD,
∴∠AEF=∠DCE=80°.
故选D.
【点睛】
本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.
6、C
【解析】
根据中心对称图形,轴对称图形的定义进行判断.
【详解】
A、是中心对称图形,不是轴对称图形,故本选项错误;
B、不是中心对称图形,也不是轴对称图形,故本选项错误;
C、既是中心对称图形,又是轴对称图形,故本选项正确;
D、不是中心对称图形,是轴对称图形,故本选项错误.
故选C.
【点睛】
本题考查了中心对称图形,轴对称图形的判断.关键是根据图形自身的对称性进行判断.
7、A
【解析】
根据任何一个一次函数都可以化为一个二元一次方程,再根据两个函数交点坐标就是二元一次方程组的解可直接得到答案.
【详解】
解:∵直线y1=k1x+b1与y2=k2x+b2的交点坐标为(2,4),
∴二元一次方程组的解为
故选A.
【点睛】
本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.
8、B
【解析】
根据有理数的加法法则计算即可.
【详解】
解:-5+1=-(5-1)=-1.
故选B.
【点睛】
本题考查了有理数的加法.
9、C
【解析】
A、B、D不是该几何体的视图,C是主视图,故选C.
【点睛】主视图是由前面看到的图形,俯视图是由上面看到的图形,左视图是由左面看到的图形,能看到的线画实线,看不到的线画虚线.
10、D
【解析】
试题分析:解不等式①可得:x>-1,解不等式②可得:x≤4,则不等式组的解为-1<x≤4,故选D.
11、D
【解析】
根据题意得:每人要赠送(x﹣1)张相片,有x个人,然后根据题意可列出方程.
【详解】
根据题意得:每人要赠送(x﹣1)张相片,有x个人,
∴全班共送:(x﹣1)x=1980,
故选D.
【点睛】
此题主要考查了一元二次方程的应用,本题要注意读清题意,弄清楚每人要赠送(x﹣1)张相片,有x个人是解决问题的关键.
12、D
【解析】
根据作一个角等于已知角的作法即可得出结论.
【详解】
解:用尺规作图作∠AOC=2∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,
第二步的作图痕迹②的作法是以点F为圆心,EF长为半径画弧.
故选:D.
【点睛】
本题考查的是作图-基本作图,熟知作一个角等于已知角的步骤是解答此题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、-y(3x-y)2
【解析】
先提公因式-y,然后再利用完全平方公式进行分解即可得.
【详解】
6xy2-9x2y-y3
=-y(9x2-6xy+y2)
=-y(3x-y)2,
故答案为:-y(3x-y)2.
【点睛】
本题考查了利用提公因式法与公式法分解因式,熟练掌握因式分解的方法及步骤是解题的关键.因式分解的一般步骤:一提(公因式),二套(套用公式),注意一定要分解到不能再分解为止.
14、2
【解析】
连接OC,由垂径定理知,点E是CD的中点,在直角△OCE中,利用勾股定理即可得到关于半径的方程,求得圆半径即可
【详解】
设AE为x,
连接OC,
∵AB是⊙O的直径,弦CD⊥AB于点E,CD=8,
∴∠CEO=90°,CE=DE=4,
由勾股定理得:OC2=CE2+OE2,
52=42+(5-x)2,
解得:x=2,
则AE是2,
故答案为:2
【点睛】
此题考查垂径定理和勾股定理,,解题的关键是利用勾股定理求关于半径的方程.
15、4
【解析】
∵AB=2cm,AB=AB1,
∴AB1=2cm,
∵四边形ABCD是矩形,AE=CE,
∴∠ABE=∠AB1E=90°
∵AE=CE
∴AB1=B1C
∴AC=4cm.
16、.
【解析】
试题分析:画树状图为:
共有36种等可能的结果数,其中“两枚骰子的点数和小于8且为偶数”的结果数为9,所以“两枚骰子的点数和小于8且为偶数”的概率==.故答案为.
考点:列表法与树状图法.
17、2
【解析】
设乘客所携带行李的重量x(kg)与运费y(元)之间的函数关系式为y=kx+b,由待定系数法求出其解即可.
【详解】
解:设乘客所携带行李的重量x(kg)与运费y(元)之间的函数关系式为y=kx+b,由题意,得 ,
解得, ,
则y=30x-1.
当y=0时,
30x-1=0,
解得:x=2.
故答案为:2.
【点睛】
本题考查了运用待定系数法求一次函数的解析式的运用,由函数值求自变量的值的运用,解答时求出函数的解析式是关键.
18、
【解析】
试题分析:如图,∵∠BAD=∠CAE=90°,∴∠DAC=∠BAE,在△DAC和△BAE中,∵AD=AB,∠DAC=∠BAE,AC=AE,∴△DAC≌△BAE(SAS),∴∠ADC=∠ABE,∴∠PDB+∠PBD=90°,∴∠DPB=90°,∴点P在以BC为直径的圆上,∵外心为O,∠BAC=60°,∴∠BOC=120°,又BC=6,∴OH=,所以OP的最小值是.故答案为.
考点:1.三角形的外接圆与外心;2.全等三角形的判定与性质.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)条形统计图如图所示,见解析;(2)选择“爱国”主题所对应的圆心角是144°;(3)估计选择以“友善”为主题的七年级学生有360名.
【解析】
(1)根据诚信的人数和所占的百分比求出抽取的总人数,用总人数乘以友善所占的百分比,即可补全统计图;
(2)用360°乘以爱国所占的百分比,即可求出圆心角的度数;
(3)用该校七年级的总人数乘以“友善”所占的百分比,即可得出答案.
【详解】
解:(1)本次调查共抽取的学生有(名)
选择“友善”的人数有(名)
∴条形统计图如图所示:
(2)∵选择“爱国”主题所对应的百分比为,
∴选择“爱国”主题所对应的圆心角是;
(3)该校七年级共有1200名学生,估计选择以“友善”为主题的七年级学生有名.
故答案为:(1)条形统计图如图所示,见解析;(2)选择“爱国”主题所对应的圆心角是144°;(3)估计选择以“友善”为主题的七年级学生有360名.
【点睛】
本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
20、 (1)见解析;(2)见解析.
【解析】
连接AF,由直径所对的圆周角是直角、同弧所对的圆周角相等的性质,证得直线CD是⊙O的切线,若证AD•CE=DE•DF,只要征得△ADF∽△DEC即可.在第一问中只能证得∠EDC=∠DAF=90°,所以在第二问中只要证得∠DEC=∠ADF即可解答此题.
【详解】
(1)连接AF,
∵DF是⊙O的直径,
∴∠DAF=90°,
∴∠F+∠ADF=90°,
∵∠F=∠ABD,∠ADG=∠ABD,
∴∠F=∠ADG,
∴∠ADF+∠ADG=90°
∴直线CD是⊙O的切线
∴∠EDC=90°,
∴∠EDC=∠DAF=90°;
(2)选取①完成证明
∵直线CD是⊙O的切线,
∴∠CDB=∠A.
∵∠CDB=∠CEB,
∴∠A=∠CEB.
∴AD∥EC.
∴∠DEC=∠ADF.
∵∠EDC=∠DAF=90°,
∴△ADF∽△DEC.
∴AD:DE=DF:EC.
∴AD•CE=DE•DF.
【点睛】
此题考查了切线的性质与判定、弦切角定理、相似三角形的判定与性质等知识.注意乘积的形式可以转化为比例的形式,通过证明三角形相似得出.还要注意构造直径所对的圆周角是圆中的常见辅助线.
21、(1)见解析;(2)6或
【解析】
试题分析:(1)根据平行线的性质和中点的性质证明三角形全等,然后根据对角线互相平分的四边形是平行四边形完成证明;
(2)由等腰三角形的性质,分三种情况:①BD=BC,②BD=CD,③BC=CD,分别求四边形的面积.
试题解析:(1)证明:∵∠A=∠ABC=90°
∴AF∥BC
∴∠CBE=∠DFE,∠BCE=∠FDE
∵E是边CD的中点
∴CE=DE
∴△BCE≌△FDE(AAS)
∴BE=EF
∴四边形BDFC是平行四边形
(2)若△BCD是等腰三角形
①若BD=DC
在Rt△ABD中,AB=
∴四边形BDFC的面积为S=×3=6;
②若BD=DC
过D作BC的垂线,则垂足为BC得中点,不可能;
③若BC=DC
过D作DG⊥BC,垂足为G
在Rt△CDG中,DG=
∴四边形BDFC的面积为S=.
考点:三角形全等,平行四边形的判定,勾股定理,四边形的面积
22、x=1
【解析】
分式方程变形后去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【详解】
化为整式方程得:2﹣3x=x﹣2,
解得:x=1,
经检验x=1是原方程的解,
所以原方程的解是x=1.
【点睛】
此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为
整式方程求解.解分式方程一定注意要验根.
23、(1);(2).
【解析】
(1)将和两点代入函数解析式即可;
(2)结合二次函数图象即可.
【详解】
解:(1)∵二次函数与轴交于和两点,
解得
∴二次函数的表达式为.
(2)由函数图象可知,二次函数值大于一次函数值的自变量x的取值范围是.
【点睛】
本题考查了待定系数法求二次函数解析式以及二次函数与不等式,解题的关键是熟悉二次函数的性质.
24、(1)(2,4.5),(-2,7.5);(2)2.8,4,5,16
【解析】
(1)先求出△OPA的面积为6时BP的长,再求出点P的坐标;
(2)分别讨论AO=AP,AP=OP和AO=OP三种情况.
【详解】
(1)在y=-x+6中,令x=0,得y=6,令y=0,得x=8,
∴A(0,6),B(8,0),
∴OA=6,OB=8,∴AB=10,
∴AB边上的高为6×8÷10=,
∵P点的运动时间为t,∴BP=t,则AP=,
当△AOP面积为6时,则有AP×=6,即×=6,解得t=7.5或12.5,
过P作PE⊥x轴,PF⊥y轴,垂足分别为E、F,
则PE==4.5或7.5,BE==6或10,
则点P坐标为(8-6,4.5)或(8-10,7.5),即(2,4.5)或(-2,7.5);
(2)由题意可知BP=t,AP=,
当△AOP为等腰三角形时,有AP=AO、AP=OP和AO=OP三种情况.
①当AP=AO时,则有=6,解得t=4或16;
②当AP=OP时,过P作PM⊥AO,垂足为M,如图1,
则M为AO中点,故P为AB中点,此时t=5;
③当AO=OP时,过O作ON⊥AB,垂足为N,过P作PH⊥OB,垂足为H,如图2,
则AN=AP=(10-t),
∵PH∥AO,∴△AOB∽△PHB,
∴=,即=,∴PH=t,
又∠OAN+∠AON=∠OAN+PBH=90°,
∴∠AON=∠PBH,又∠ANO=∠PHB,
∴△ANO∽△PHB,
∴=,即=,解得t=;
综上可知当t的值为、4、5和16时,△AOP为等腰三角形.
25、⑴;
⑵答案不唯一.如;
⑶
.
【解析】
(1)根据①②③的算式中,变与不变的部分,找出规律,写出新的算式;
(2)将(1)中,发现的规律,由特殊到一般,得出结论;
(3)一定成立.利用整式的混合运算方法加以证明.
26、 (1) CE=4;(2)BG=8;(3)证明见解析.
【解析】
(1)只要证明△ABC∽△CBE,可得,由此即可解决问题;
(2)连接AG,只要证明△ABG∽△FBE,可得,由BE==4,再求出BF,即可解决问题;
(3)通过计算首先证明CF=FG,推出∠FCG=∠FGC,由CF∥BD,推出∠GCF=∠BDG,推出∠BDG=∠BGD即可证明.
【详解】
解:(1)∵BH与⊙O相切于点B,
∴AB⊥BH,
∵BH∥CE,
∴CE⊥AB,
∵AB是直径,
∴∠CEB=∠ACB=90°,
∵∠CBE=∠ABC,
∴△ABC∽△CBE,
∴,
∵AC=,
∴CE=4.
(2)连接AG.
∵∠FEB=∠AGB=90°,∠EBF=∠ABG,
∴△ABG∽△FBE,
∴,
∵BE==4,
∴BF= ,
∴,
∴BG=8.
(3)易知CF=4+=5,
∴GF=BG﹣BF=5,
∴CF=GF,
∴∠FCG=∠FGC,
∵CF∥BD,
∴∠GCF=∠BDG,
∴∠BDG=∠BGD,
∴BG=BD.
【点睛】
本题考查的是切线的性质、相似三角形的判定和性质、勾股定理的应用,掌握圆的切线垂直于经过切点的半径是解题的关键.
27、建筑物AB的高度约为5.9米
【解析】
在△CED中,得出DE,在△CFD中,得出DF,进而得出EF,列出方程即可得出建筑物AB的高度;
【详解】
在Rt△CED中,∠CED=58°,
∵tan58°=,
∴DE= ,
在Rt△CFD中,∠CFD=22°,
∵tan22°= ,
∴DF= ,
∴EF=DF﹣DE=-,
同理:EF=BE﹣BF= ,
∴=-,
解得:AB≈5.9(米),
答:建筑物AB的高度约为5.9米.
【点睛】
考查解直角三角形的应用,解题的关键是明确题意,利用数形结合的思想解答问题.
内蒙古呼和浩特实验教育集团2022年中考数学最后冲刺模拟试卷含解析: 这是一份内蒙古呼和浩特实验教育集团2022年中考数学最后冲刺模拟试卷含解析,共23页。试卷主要包含了答题时请按要求用笔,下列实数中,结果最大的是等内容,欢迎下载使用。
内蒙古呼和浩特实验教育集团达标名校2022年中考数学对点突破模拟试卷含解析: 这是一份内蒙古呼和浩特实验教育集团达标名校2022年中考数学对点突破模拟试卷含解析,共21页。
内蒙古呼和浩特实验教育集团2021-2022学年中考二模数学试题含解析: 这是一份内蒙古呼和浩特实验教育集团2021-2022学年中考二模数学试题含解析,共17页。试卷主要包含了如果,那么等内容,欢迎下载使用。