|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021-2022学年山东省济南市玉皇庙中学中考数学押题试卷含解析
    立即下载
    加入资料篮
    2021-2022学年山东省济南市玉皇庙中学中考数学押题试卷含解析01
    2021-2022学年山东省济南市玉皇庙中学中考数学押题试卷含解析02
    2021-2022学年山东省济南市玉皇庙中学中考数学押题试卷含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年山东省济南市玉皇庙中学中考数学押题试卷含解析

    展开
    这是一份2021-2022学年山东省济南市玉皇庙中学中考数学押题试卷含解析,共22页。试卷主要包含了如果,若一次函数y=,已知点A等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD边落在AB边上,折痕为AE,再将以DE为折痕向右折叠,AE与BC交于点F,则的面积为( )

    A.4 B.6 C.8 D.10
    2.如图,AB切⊙O于点B,OA=2,AB=3,弦BC∥OA,则劣弧BC的弧长为(  )

    A. B. C.π D.
    3.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则
    ①二次函数的最大值为a+b+c;
    ②a﹣b+c<0;
    ③b2﹣4ac<0;
    ④当y>0时,﹣1<x<3,其中正确的个数是(  )

    A.1 B.2 C.3 D.4
    4.图1~图4是四个基本作图的痕迹,关于四条弧①、②、③、④有四种说法:
    弧①是以O为圆心,任意长为半径所画的弧;弧②是以P为圆心,任意长为半径所画的弧;弧③是以A为圆心,任意长为半径所画的弧;弧④是以P为圆心,任意长为半径所画的弧;
    其中正确说法的个数为(  )
    A.4 B.3 C.2 D.1
    5.如图,这是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积为(  )

    A.9π B.10π C.11π D.12π
    6.有两把不同的锁和三把钥匙,其中两把钥匙恰好分别能打开这两把锁,第三把钥匙不能打开这两把锁,任意取出一把钥匙去开任意的一把锁,一次打开锁的概率是( )
    A. B. C. D.
    7.如果(,均为非零向量),那么下列结论错误的是(  )
    A.// B.-2=0 C.= D.
    8.若一次函数y=(2m﹣3)x﹣1+m的图象不经过第三象限,则m的取值范图是(  )
    A.1<m< B.1≤m< C.1<m≤ D.1≤m≤
    9.如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为(  )

    A.3a+2b B.3a+4b C.6a+2b D.6a+4b
    10.已知点A(0,﹣4),B(8,0)和C(a,﹣a),若过点C的圆的圆心是线段AB的中点,则这个圆的半径的最小值是(  )
    A. B. C. D.2
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,将一张矩形纸片ABCD沿对角线BD折叠,点C的对应点为,再将所折得的图形沿EF折叠,使得点D和点A重合若,,则折痕EF的长为______.

    12.如图所示,直线y=x+b交x轴A点,交y轴于B点,交双曲线于P点,连OP,则OP2﹣OA2=__.

    13.如图,点A的坐标为(3,),点B的坐标为(6,0),将△AOB绕点B按顺时针方向旋转一定的角度后得到△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为_____.

    14.已知三角形两边的长分别为1、5,第三边长为整数,则第三边的长为_____.
    15.一元二次方程x2+mx+3=0的一个根为- 1,则另一个根为 .
    16.计算(5ab3)2的结果等于_____.
    17.电子跳蚤游戏盘是如图所示的△ABC,AB=AC=BC=1.如果跳蚤开始时在BC边的P0处,BP0=2.跳蚤第一步从P0跳到AC边的P1(第1次落点)处,且CP1= CP0;第二步从P1跳到AB边的P2(第2次落点)处,且AP2= AP1;第三步从P2跳到BC边的P3(第3次落点)处,且BP3= BP2;…;跳蚤按照上述规则一直跳下去,第n次落点为Pn(n为正整数),则点P2016与点P2017之间的距离为_________.

    三、解答题(共7小题,满分69分)
    18.(10分)如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒.

    (1)求抛物线的解析式.
    (2)在图①中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?
    (3)在图②中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P做PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?
    19.(5分)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),B(4,0),与y轴交于点C(0,2)
    (1)求抛物线的表达式;
    (2)抛物线的对称轴与x轴交于点M,点D与点C关于点M对称,试问在该抛物线的对称轴上是否存在点P,使△BMP与△ABD相似?若存在,请求出所有满足条件的P点的坐标;若不存在,请说明理由.

    20.(8分)如图,在Rt△ABC与Rt△ABD中,∠ABC=∠BAD=90°,AD=BC,AC,BD相交于点G,过点A作AE∥DB交CB的延长线于点E,过点B作BF∥CA交DA的延长线于点F,AE,BF相交于点H.图中有若干对三角形是全等的,请你任选一对进行证明;(不添加任何辅助线)证明:四边形AHBG是菱形;若使四边形AHBG是正方形,还需在Rt△ABC的边长之间再添加一个什么条件?请你写出这个条件.(不必证明)

    21.(10分)如图,在等腰△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D且BD=2AD,过点D作DE⊥AC交BA延长线于点E,垂足为点F.
    (1)求tan∠ADF的值;
    (2)证明:DE是⊙O的切线;
    (3)若⊙O的半径R=5,求EF的长.

    22.(10分)如图,在矩形纸片ABCD中,AB=6,BC=1.把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.

    (1)求证:△ABG≌△C′DG;
    (2)求tan∠ABG的值;
    (3)求EF的长.
    23.(12分)某超市开展早市促销活动,为早到的顾客准备一份简易早餐,餐品为四样A:菜包、B:面包、C:鸡蛋、D:油条.超市约定:随机发放,早餐一人一份,一份两样,一样一个.
    (1)按约定,“某顾客在该天早餐得到两个鸡蛋”是   事件(填“随机”、“必然”或“不可能”);
    (2)请用列表或画树状图的方法,求出某顾客该天早餐刚好得到菜包和油条的概率.
    24.(14分)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚.到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量(千克)与销售单价(元/千克)之间的函数关系如图所示.
    (1)求与的函数关系式,并写出的取值范围;
    (2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?
    (3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    根据折叠易得BD,AB长,利用相似可得BF长,也就求得了CF的长度,△CEF的面积=CF•CE.
    【详解】
    解:由折叠的性质知,第二个图中BD=AB-AD=4,第三个图中AB=AD-BD=2,
    因为BC∥DE,
    所以BF:DE=AB:AD,
    所以BF=2,CF=BC-BF=4,
    所以△CEF的面积=CF•CE=8;
    故选:C.
    点睛:
    本题利用了:①折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;②矩形的性质,平行线的性质,三角形的面积公式等知识点.
    2、A
    【解析】
    试题分析:连接OB,OC,

    ∵AB为圆O的切线,
    ∴∠ABO=90°,
    在Rt△ABO中,OA=,∠A=30°,
    ∴OB=,∠AOB=60°,
    ∵BC∥OA,
    ∴∠OBC=∠AOB=60°,
    又OB=OC,
    ∴△BOC为等边三角形,
    ∴∠BOC=60°,
    则劣弧长为.
    故选A.
    考点: 1.切线的性质;2.含30度角的直角三角形;3.弧长的计算.
    3、B
    【解析】
    分析:直接利用二次函数图象的开口方向以及图象与x轴的交点,进而分别分析得出答案.
    详解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,
    ∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;
    ②当x=﹣1时,a﹣b+c=0,故②错误;
    ③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;
    ④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),
    ∴A(3,0),
    故当y>0时,﹣1<x<3,故④正确.
    故选B.
    点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A点坐标是解题关键.
    4、C
    【解析】
    根据基本作图的方法即可得到结论.
    【详解】
    解:(1)弧①是以O为圆心,任意长为半径所画的弧,正确;
    (2)弧②是以P为圆心,大于点P到直线的距离为半径所画的弧,错误;
    (3)弧③是以A为圆心,大于AB的长为半径所画的弧,错误;
    (4)弧④是以P为圆心,任意长为半径所画的弧,正确.
    故选C.
    【点睛】
    此题主要考查了基本作图,解决问题的关键是掌握基本作图的方法.
    5、B
    【解析】
    【分析】由三视图可判断出几何体的形状,进而利用圆锥的侧面积公式求出答案.
    【详解】由题意可得此几何体是圆锥,
    底面圆的半径为:2,母线长为:5,
    故这个几何体的侧面积为:π×2×5=10π,
    故选B.
    【点睛】本题考查了由三视图判断几何体的形状以及圆锥侧面积求法,正确得出几何体的形状是解题关键.
    6、B
    【解析】
    解:将两把不同的锁分别用A与B表示,三把钥匙分别用A,B与C表示,且A钥匙能打开A锁,B钥匙能打开B锁,画树状图得:

    ∵共有6种等可能的结果,一次打开锁的有2种情况,∴一次打开锁的概率为:.故选B.
    点睛:本题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.
    7、B
    【解析】
    试题解析:向量最后的差应该还是向量. 故错误.
    故选B.
    8、B
    【解析】
    根据一次函数的性质,根据不等式组即可解决问题;
    【详解】
    ∵一次函数y=(2m-3)x-1+m的图象不经过第三象限,
    ∴,
    解得1≤m<.
    故选:B.
    【点睛】
    本题考查一次函数的图象与系数的关系等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.
    9、A
    【解析】
    根据这块矩形较长的边长=边长为3a的正方形的边长-边长为2b的小正方形的边长+边长为2b的小正方形的边长的2倍代入数据即可.
    【详解】
    依题意有:3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.
    故这块矩形较长的边长为3a+2b.故选A.
    【点睛】
    本题主要考查矩形、正方形和整式的运算,熟读题目,理解题意,清楚题中的等量关系是解答本题的关键.
    10、B
    【解析】
    首先求得AB的中点D的坐标,然后求得经过点D且垂直于直线y=-x的直线的解析式,然后求得与y=-x的交点坐标,再求得交点与D之间的距离即可.
    【详解】
    AB的中点D的坐标是(4,-2),
    ∵C(a,-a)在一次函数y=-x上,
    ∴设过D且与直线y=-x垂直的直线的解析式是y=x+b,
    把(4,-2)代入解析式得:4+b=-2,
    解得:b=-1,
    则函数解析式是y=x-1.
    根据题意得:,
    解得:,
    则交点的坐标是(3,-3).
    则这个圆的半径的最小值是:=.
    故选:B
    【点睛】
    本题考查了待定系数法求函数的解析式,以及两直线垂直的条件,正确理解C(a,-a),一定在直线y=-x上,是关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、
    【解析】
    首先由折叠的性质与矩形的性质,证得是等腰三角形,则在中,利用勾股定理,借助于方程即可求得AN的长,又由≌,易得:,由三角函数的性质即可求得MF的长,又由中位线的性质求得EM的长,则问题得解
    【详解】
    如图,设与AD交于N,EF与AD交于M,

    根据折叠的性质可得:,,,
    四边形ABCD是矩形,
    ,,,



    设,则,
    在中,,


    即,
    ,,,
    ≌,





    由折叠的性质可得:,




    故答案为.
    【点睛】
    本题考查了折叠的性质,全等三角形的判定与性质,三角函数的性质以及勾股定理等知识,综合性较强,有一定的难度,解题时要注意数形结合思想与方程思想的应用.
    12、1
    【解析】
    解:∵直线y=x+b与双曲线 (x>0)交于点P,设P点的坐标(x,y),
    ∴x﹣y=﹣b,xy=8,
    而直线y=x+b与x轴交于A点,
    ∴OA=b.
    又∵OP2=x2+y2,OA2=b2,
    ∴OP2﹣OA2=x2+y2﹣b2=(x﹣y)2+2xy﹣b2=1.
    故答案为1.
    13、(,)
    【解析】
    作AC⊥OB、O′D⊥A′B,由点A、B坐标得出OC=3、AC=、BC=OC=3,从而知tan∠ABC==,由旋转性质知BO′=BO=6,tan∠A′BO′=tan∠ABO==,设O′D=x、BD=3x,由勾股定理求得x的值,即可知BD、O′D的长即可.
    【详解】

    如图,过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D,
     
    ∵A(3, ),
    ∴OC=3,AC=,
    ∵OB=6,
    ∴BC=OC=3,
    则tan∠ABC==,
    由旋转可知,BO′=BO=6,∠A′BO′=∠ABO,
    ∴==,
    设O′D=x,BD=3x,
    由O′D2+BD2=O′B2可得(x)2+(3x)2=62,
    解得:x=或x=− (舍),
    则BD=3x=,O′D=x=,
    ∴OD=OB+BD=6+=,
    ∴点O′的坐标为(,).
    【点睛】
    本题考查的是图形的旋转,熟练掌握勾股定理和三角函数是解题的关键.
    14、2
    【解析】
    分析:根据三角形的三边关系“任意两边之和>第三边,任意两边之差<第三边”,求得第三边的取值范围,再进一步根据第三边是整数求解.
    详解:根据三角形的三边关系,得
    第三边>4,而<1.
    又第三条边长为整数,
    则第三边是2.
    点睛:此题主要是考查了三角形的三边关系,同时注意整数这一条件.
    15、-1.
    【解析】
    因为一元二次方程的常数项是已知的,可直接利用两根之积的等式求解.
    【详解】
    ∵一元二次方程x2+mx+1=0的一个根为-1,设另一根为x1,
    由根与系数关系:-1•x1=1,
    解得x1=-1.
    故答案为-1.
    16、25a2b1.
    【解析】
    代数式内每项因式均平方即可.
    【详解】
    解:原式=25a2b1.
    【点睛】
    本题考查了代数式的乘方.
    17、3
    【解析】
    ∵△ABC为等边三角形,边长为1,根据跳动规律可知,
    ∴P0P1=3,P1P2=2,P2P3=3,P3P4=2,…
    观察规律:当落点脚标为奇数时,距离为3,当落点脚标为偶数时,距离为2,
    ∵2017是奇数,
    ∴点P2016与点P2017之间的距离是3.
    故答案为:3.
    【点睛】考查的是等边三角形的性质,根据题意求出P0P1,P1P2,P2P3,P3P4的值,找出规律是解答此题的关键.

    三、解答题(共7小题,满分69分)
    18、(1)y=﹣x2+2x+3;(2)当t=或t=时,△PCQ为直角三角形;(3)当t=2时,△ACQ的面积最大,最大值是1.
    【解析】
    (1)根据抛物线的对称轴与矩形的性质可得点A的坐标,根据待定系数法可得抛物线的解析式;
    (2)先根据勾股定理可得CE,再分两种情况:当∠QPC=90°时;当∠PQC=90°时;讨论可得△PCQ为直角三角形时t的值;
    (3)根据待定系数法可得直线AC的解析式,根据S△ACQ=S△AFQ+S△CPQ可得S△ACQ==﹣(t﹣2)2+1,依此即可求解.
    【详解】
    解:(1)∵抛物线的对称轴为x=1,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4),点A在DE上,
    ∴点A坐标为(1,4),
    设抛物线的解析式为y=a(x﹣1)2+4,把C(3,0)代入抛物线的解析式,可得a(3﹣1)2+4=0,解得a=﹣1.
    故抛物线的解析式为y=﹣(x﹣1)2+4,即y=﹣x2+2x+3;
    (2)依题意有:OC=3,OE=4,
    ∴CE===5,
    当∠QPC=90°时,
    ∵cos∠QPC=,
    ∴,解得t=;
    当∠PQC=90°时,
    ∵cos∠QCP=,
    ∴,解得t=.
    ∴当t=或 t=时,△PCQ为直角三角形;
    (3)∵A(1,4),C(3,0),
    设直线AC的解析式为y=kx+b,则有:
    ,解得.故直线AC的解析式为y=﹣2x+2.
    ∵P(1,4﹣t),将y=4﹣t代入y=﹣2x+2中,得x=1+,
    ∴Q点的横坐标为1+,将x=1+ 代入y=﹣(x﹣1)2+4 中,得y=4﹣.
    ∴Q点的纵坐标为4﹣,
    ∴QF=(4﹣)﹣(4﹣t)=t﹣,
    ∴S△ACQ =S△AFQ +S△CFQ
    =FQ•AG+FQ•DG,
    =FQ(AG+DG),
    =FQ•AD,
    =×2(t﹣),
    =﹣(t﹣2)2+1,
    ∴当t=2时,△ACQ的面积最大,最大值是1.
    【点睛】
    考查了二次函数综合题,涉及的知识点有:抛物线的对称轴,矩形的性质,待定系数法求抛物线的解析式,待定系数法求直线的解析式,勾股定理,锐角三角函数,三角形面积,二次函数的最值,方程思想以及分类思想的运用.
    19、 (1)y=﹣x2+x+2;(2)满足条件的点P的坐标为(,)或(,﹣)或(,5)或(,﹣5).
    【解析】
    (1)利用待定系数法求抛物线的表达式;
    (2)使△BMP与△ABD相似的有三种情况,分别求出这三个点的坐标.
    【详解】
    (1)∵抛物线与x轴交于点A(﹣1,0),B(4,0),
    ∴设抛物线的解析式为y=a(x+1)(x﹣4),
    ∵抛物线与y轴交于点C(0,2),
    ∴a×1×(﹣4)=2,
    ∴a=﹣,
    ∴抛物线的解析式为y=﹣(x+1)(x﹣4)=﹣x2+x+2;
    (2)如图1,连接CD,∵抛物线的解析式为y=﹣x2+x+2,
    ∴抛物线的对称轴为直线x=,
    ∴M(,0),∵点D与点C关于点M对称,且C(0,2),
    ∴D(3,﹣2),
    ∵MA=MB,MC=MD,
    ∴四边形ACBD是平行四边形,
    ∵A(﹣1,0),B(4,0),C(3,﹣22),
    ∴AB2=25,BD2=(4﹣1)2+22=5,AD2=(3+1)2+22=20,
    ∴AD2+BD2=AB2,
    ∴△ABD是直角三角形,
    ∴∠ADB=90°,
    设点P(,m),
    ∴MP=|m|,
    ∵M(,0),B(4,0),
    ∴BM=,
    ∵△BMP与△ABD相似,
    ∴①当△BMP∽ADB时,
    ∴,
    ∴,
    ∴m=±,
    ∴P(,)或(,﹣),
    ②当△BMP∽△BDA时,

    ∴,
    ∴m=±5,
    ∴P(,5)或(,﹣5),
    即:满足条件的点P的坐标为P(,)或(,﹣)或(,5)或(,﹣5).
    【点睛】
    本题考查了二次函数的应用,解题的关键是熟练的掌握二次函数的应用.
    20、 (1)详见解析;(2)详见解析;(3)需要添加的条件是AB=BC.
    【解析】
    试题分析:(1)可根据已知条件,或者图形的对称性合理选择全等三角形,如△ABC≌△BAD,利用SAS可证明.
    (2)由已知可得四边形AHBG是平行四边形,由(1)可知∠ABD=∠BAC,得到△GAB为等腰三角形,▱AHBG的两邻边相等,从而得到平行四边形AHBG是菱形.
    试题解析:
    (1)解:△ABC≌△BAD.
    证明:∵AD=BC,
    ∠ABC=∠BAD=90°,
    AB=BA,
    ∴△ABC≌△BAD(SAS).
    (2)证明:∵AH∥GB,BH∥GA,
    ∴四边形AHBG是平行四边形.
    ∵△ABC≌△BAD,
    ∴∠ABD=∠BAC.
    ∴GA=GB.
    ∴平行四边形AHBG是菱形.
    (3)需要添加的条件是AB=BC.
    点睛:本题考查全等三角形,四边形等几何知识,考查几何论证和思维能力,第(3)小题是开放题,答案不唯一.
    21、(1);(2)见解析;(3)
    【解析】
    (1) AB是⊙O的直径,AB=AC,可得∠ADB=90°,∠ADF=∠B,可求得tan∠ADF的值;
    (2)连接OD,由已知条件证明AC∥OD,又DE⊥AC,可得DE是⊙O的切线;
    (3)由AF∥OD,可得△AFE∽△ODE,可得后求得EF的长.
    【详解】
    解:(1)∵AB是⊙O的直径,
    ∴∠ADB=90°,
    ∵AB=AC,
    ∴∠BAD=∠CAD,
    ∵DE⊥AC,
    ∴∠AFD=90°,
    ∴∠ADF=∠B,
    ∴tan∠ADF=tan∠B==;
    (2)连接OD,
    ∵OD=OA,
    ∴∠ODA=∠OAD,
    ∵∠OAD=∠CAD,
    ∴∠CAD=∠ODA,
    ∴AC∥OD,
    ∵DE⊥AC,
    ∴OD⊥DE,
    ∴DE是⊙O的切线;
    (3)设AD=x,则BD=2x,
    ∴AB=x=10,
    ∴x=2,
    ∴AD=2,
    同理得:AF=2,DF=4,
    ∵AF∥OD,
    ∴△AFE∽△ODE,
    ∴,
    ∴=,
    ∴EF=.
    【点睛】
    本题考查切线的证明及圆与三角形相似的综合,为中考常考题型,需引起重视.
    22、(1)证明见解析(2)7/24(3)25/6
    【解析】(1)证明:∵△BDC′由△BDC翻折而成,
    ∴∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,∴∠ABG=∠ADE。
    在△ABG≌△C′DG中,∵∠BAG=∠C,AB= C′D,∠ABG=∠AD C′,
    ∴△ABG≌△C′DG(ASA)。
    (2)解:∵由(1)可知△ABG≌△C′DG,∴GD=GB,∴AG+GB=AD。
    设AG=x,则GB=1﹣x,
    在Rt△ABG中,∵AB2+AG2=BG2,即62+x2=(1﹣x)2,解得x=。
    ∴。
    (3)解:∵△AEF是△DEF翻折而成,∴EF垂直平分AD。∴HD=AD=4。
    ∵tan∠ABG=tan∠ADE=。∴EH=HD×=4×。
    ∵EF垂直平分AD,AB⊥AD,∴HF是△ABD的中位线。∴HF=AB=×6=3。
    ∴EF=EH+HF=。
    (1)根据翻折变换的性质可知∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,故可得出结论。
    (2)由(1)可知GD=GB,故AG+GB=AD,设AG=x,则GB=1-x,在Rt△ABG中利用勾股定理即可求出AG的长,从而得出tan∠ABG的值。
    (3)由△AEF是△DEF翻折而成可知EF垂直平分AD,故HD=AD=4,再根据tan∠ABG的值即可得出EH的长,同理可得HF是△ABD的中位线,故可得出HF的长,由EF=EH+HF即可得出结果。
    23、(1)不可能;(2).
    【解析】
    (1)利用确定事件和随机事件的定义进行判断;
    (2)画树状图展示所有12种等可能的结果数,再找出其中某顾客该天早餐刚好得到菜包和油条的结果数,然后根据概率公式计算.
    【详解】
    (1)某顾客在该天早餐得到两个鸡蛋”是不可能事件;
    故答案为不可能;
    (2)画树状图:

    共有12种等可能的结果数,其中某顾客该天早餐刚好得到菜包和油条的结果数为2,
    所以某顾客该天早餐刚好得到菜包和油条的概率=.
    【点睛】
    本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
    24、(1)();(2)定价为19元时,利润最大,最大利润是1210元.(3)不能销售完这批蜜柚.
    【解析】
    【分析】(1)根据图象利用待定系数法可求得函数解析式,再根据蜜柚销售不会亏本以及销售量大于0求得自变量x的取值范围;
    (2)根据利润=每千克的利润×销售量,可得关于x的二次函数,利用二次函数的性质即可求得;
    (3)先计算出每天的销量,然后计算出40天销售总量,进行对比即可得.
    【详解】(1)设 ,将点(10,200)、(15,150)分别代入,
    则,解得 ,
    ∴,
    ∵蜜柚销售不会亏本,∴,
    又,∴ ,∴,
    ∴ ;
    (2) 设利润为元,

    =
    =,
    ∴ 当 时, 最大为1210,
    ∴ 定价为19元时,利润最大,最大利润是1210元;
    (3) 当 时,,
    110×40=4400<4800,
    ∴不能销售完这批蜜柚.
    【点睛】 本题考查了一次函数的应用、二次函数的应用,弄清题意,找出数量间的关系列出函数解析式是解题的关键.

    相关试卷

    山东省济南市莱芜区陈毅中学2021-2022学年中考押题数学预测卷含解析: 这是一份山东省济南市莱芜区陈毅中学2021-2022学年中考押题数学预测卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列分式是最简分式的是,下列计算正确的是,初三,下列各运算中,计算正确的是,若分式方程无解,则a的值为等内容,欢迎下载使用。

    山东省济南市市中学区五校联考2021-2022学年中考数学押题卷含解析: 这是一份山东省济南市市中学区五校联考2021-2022学年中考数学押题卷含解析,共24页。试卷主要包含了考生要认真填写考场号和座位序号,下列运算正确的是等内容,欢迎下载使用。

    山东省济南市历城区重点名校2021-2022学年中考数学押题卷含解析: 这是一份山东省济南市历城区重点名校2021-2022学年中考数学押题卷含解析,共22页。试卷主要包含了下列计算正确的是,太原市出租车的收费标准是,计算结果是,下列各式计算正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map