2021-2022学年陕西省西安市长安区中考猜题数学试卷含解析
展开这是一份2021-2022学年陕西省西安市长安区中考猜题数学试卷含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,计算﹣2+3的结果是,下列计算正确的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.下列图形是中心对称图形的是( )
A. B. C. D.
2. 如图,桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是( )
A. B. C. D.
3.如图,按照三视图确定该几何体的侧面积是(单位:cm)( )
A.24π cm2 B.48π cm2 C.60π cm2 D.80π cm2
4.如图,在平面直角坐标系中,线段AB的端点坐标为A(-2,4),B(4,2),直线y=kx-2与线段AB有交点,则K的值不可能是( )
A.-5 B.-2 C.3 D.5
5.计算﹣2+3的结果是( )
A.1 B.﹣1 C.﹣5 D.﹣6
6.在以下三个图形中,根据尺规作图的痕迹,能判断射线AD平分∠BAC的是( )
A.图2 B.图1与图2 C.图1与图3 D.图2与图3
7.下列计算正确的是( )
A.2x2+3x2=5x4 B.2x2﹣3x2=﹣1
C.2x2÷3x2=x2 D.2x2•3x2=6x4
8.某学校举行一场知识竞赛活动,竞赛共有4小题,每小题5分,答对给5分,答错或不答给0分,在该学校随机抽取若干同学参加比赛,成绩被制成不完整的统计表如下.
成绩
人数(频数)
百分比(频率)
0
5
0.2
10
5
15
0.4
20
5
0.1
根据表中已有的信息,下列结论正确的是( )
A.共有40名同学参加知识竞赛
B.抽到的同学参加知识竞赛的平均成绩为10分
C.已知该校共有800名学生,若都参加竞赛,得0分的估计有100人
D.抽到同学参加知识竞赛成绩的中位数为15分
9.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.0000000076克,将数0.0000000076用科学记数法表示为( )
A.7.6×10﹣9 B.7.6×10﹣8 C.7.6×109 D.7.6×108
10.如图,已知第一象限内的点A在反比例函数y=上,第二象限的点B在反比例函数上,且OA⊥OB,,则k的值为( )
A.﹣2 B.4 C.﹣4 D.2
11.在平面直角坐标系xOy中,对于任意三点A,B,C的“矩面积”,给出如下定义:“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah.例如:三点坐标分别为A(1,2),B(﹣3,1),C(2,﹣2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S=ah=1.若D(1,2)、E(﹣2,1)、F(0,t)三点的“矩面积”为18,则t的值为( )
A.﹣3或7 B.﹣4或6 C.﹣4或7 D.﹣3或6
12.已知y关于x的函数图象如图所示,则当y<0时,自变量x的取值范围是( )
A.x<0 B.﹣1<x<1或x>2 C.x>﹣1 D.x<﹣1或1<x<2
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图所示,轮船在处观测灯塔位于北偏西方向上,轮船从处以每小时海里的速度沿南偏西方向匀速航行,小时后到达码头处,此时,观测灯塔位于北偏西方向上,则灯塔与码头的距离是______海里(结果精确到个位,参考数据:,,)
14.从长度分别是3,4,5的三条线段中随机抽出一条,与长为2,3的两条线段首尾顺次相接,能构成三角形的概率是_______.
15.如图,AB为⊙0的弦,AB=6,点C是⊙0上的一个动点,且∠ACB=45°,若点M、N分别是AB、BC的中点,则MN长的最大值是______________.
16.已知一块等腰三角形钢板的底边长为60cm,腰长为50 cm,能从这块钢板上截得得最大圆得半径为________cm
17.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为,随机取出一个小球后不放回,再随机取出一个小球,则两次取出的小球标号的和等于4的概率是_____.
18.为响应“书香成都”建设的号召,在全校形成良好的人文阅读风尚,成都市某中学随机调查了部分学生平均每天的阅读时间,统计结果如图所示,则在本次调查中,阅读时间的中位数是________小时.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,反比例y=的图象与一次函数y=kx﹣3的图象在第一象限内交于A(4,a).
(1)求一次函数的解析式;
(2)若直线x=n(0<n<4)与反比例函数和一次函数的图象分别交于点B,C,连接AB,若△ABC是等腰直角三角形,求n的值.
20.(6分)如图,在ABCD中,点E是AB边的中点,DE与CB的延长线交于点F.
求证:△ADE≌△BFE;若DF平分∠ADC,连接CE.试判断CE和DF的位置关系,并说明理由.
21.(6分)如图,在平面直角坐标系中有三点(1,2),(3,1),(-2,-1),其中有两点同时在反比例函数的图象上,将这两点分别记为A,B,另一点记为C,
(1)求出的值;
(2)求直线AB对应的一次函数的表达式;
(3)设点C关于直线AB的对称点为D,P是轴上的一个动点,直接写出PC+PD的最小值(不必说明理由).
22.(8分)全面两孩政策实施后,甲,乙两个家庭有了各自的规划.假定生男生女的概率相同,回答下列问题:甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是 ;乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.
23.(8分)抛物线y=x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,﹣3).
求抛物线的解析式;如图1,抛物线顶点为E,EF⊥x轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若∠MNC=90°,请指出实数m的变化范围,并说明理由.如图2,将抛物线平移,使其顶点E与原点O重合,直线y=kx+2(k>0)与抛物线相交于点P、Q(点P在左边),过点P作x轴平行线交抛物线于点H,当k发生改变时,请说明直线QH过定点,并求定点坐标.
24.(10分) “千年古都,大美西安”.某校数学兴趣小组就“最想去的西安旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,(景点对应的名称分别是:A:大雁塔 B:兵马俑 C:陕西历史博物馆 D:秦岭野生动物园 E:曲江海洋馆).下面是根据调查结果进行数据整理后绘制出的不完整的统计图:
请根据图中提供的信息,解答下列问题:
(1)求被调查的学生总人数;
(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;
(3)若该校共有800名学生,请估计“最想去景点B”的学生人数.
25.(10分)某校初三进行了第三次模拟考试,该校领导为了了解学生的数学考试情况,抽样调查了部分学生的数学成绩,并将抽样的数据进行了如下整理.
(1)填空_______,_______,数学成绩的中位数所在的等级_________.
(2)如果该校有1200名学生参加了本次模拟测,估计等级的人数;
(3)已知抽样调查学生的数学成绩平均分为102分,求A级学生的数学成绩的平均分数.
①如下分数段整理样本
等级等级
分数段
各组总分
人数
4
843
574
171
2
②根据上表绘制扇形统计图
26.(12分)如图,已知点C是以AB为直径的⊙O上一点,CH⊥AB于点H,过点B作⊙O的切线交直线AC于点D,点E为CH的中点,连接AE并延长交BD于点F,直线CF交AB的延长线于G.
(1)求证:AE•FD=AF•EC;
(2)求证:FC=FB;
(3)若FB=FE=2,求⊙O的半径r的长.
27.(12分)如图,一次函数y=﹣x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A(1,a),B(3,b)两点.求反比例函数的表达式在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标求△PAB的面积.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
根据中心对称图形的概念,轴对称图形与中心对称图形是图形沿对称中心旋转180度后与原图重合,即可解题.
A、不是中心对称图形,故本选项错误;
B、是中心对称图形,故本选项正确;
C、不是中心对称图形,故本选项错误;
D、不是中心对称图形,故本选项错误.
故选B.
考点:中心对称图形.
【详解】
请在此输入详解!
2、C
【解析】
根据左视图是从左面看所得到的图形进行解答即可.
【详解】
从左边看时,圆柱和长方体都是一个矩形,圆柱的矩形竖放在长方体矩形的中间.
故选:C.
【点睛】
本题考查了三视图的知识,左视图是从物体的左面看得到的视图.
3、A
【解析】
由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其侧面积.
【详解】
解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;
根据三视图知:该圆锥的母线长为6cm,底面半径为8÷1=4cm,
故侧面积=πrl=π×6×4=14πcm1.
故选:A.
【点睛】
此题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.
4、B
【解析】
当直线y=kx-2与线段AB的交点为A点时,把A(-2,4)代入y=kx-2,求出k=-3,根据一次函数的有关性质得到当k≤-3时直线y=kx-2与线段AB有交点;当直线y=kx-2与线段AB的交点为B点时,把B(4,2)代入y=kx-2,求出k=1,根据一次函数的有关性质得到当k≥1时直线y=kx-2与线段AB有交点,从而能得到正确选项.
【详解】
把A(-2,4)代入y=kx-2得,4=-2k-2,解得k=-3,
∴当直线y=kx-2与线段AB有交点,且过第二、四象限时,k满足的条件为k≤-3;
把B(4,2)代入y=kx-2得,4k-2=2,解得k=1,
∴当直线y=kx-2与线段AB有交点,且过第一、三象限时,k满足的条件为k≥1.
即k≤-3或k≥1.
所以直线y=kx-2与线段AB有交点,则k的值不可能是-2.
故选B.
【点睛】
本题考查了一次函数y=kx+b(k≠0)的性质:当k>0时,图象必过第一、三象限,k越大直线越靠近y轴;当k<0时,图象必过第二、四象限,k越小直线越靠近y轴.
5、A
【解析】
根据异号两数相加的法则进行计算即可.
【详解】
解:因为-2,3异号,且|-2|<|3|,所以-2+3=1.
故选A.
【点睛】
本题主要考查了异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值.
6、C
【解析】
【分析】根据角平分线的作图方法可判断图1,根据图2的作图痕迹可知D为BC中点,不是角平分线,图3中根据作图痕迹可通过判断三角形全等推导得出AD是角平分线.
【详解】图1中,根据作图痕迹可知AD是角平分线;
图2中,根据作图痕迹可知作的是BC的垂直平分线,则D为BC边的中点,因此AD不是角平分线;
图3:由作图方法可知AM=AE,AN=AF,∠BAC为公共角,∴△AMN≌△AEF,
∴∠3=∠4,
∵AM=AE,AN=AF,∴MF=EN,又∵∠MDF=∠EDN,∴△FDM≌△NDE,
∴DM=DE,
又∵AD是公共边,∴△ADM≌△ADE,
∴∠1=∠2,即AD平分∠BAC,
故选C.
【点睛】本题考查了尺规作图,三角形全等的判定与性质等,熟知角平分的尺规作图方法、全等三角形的判定与性质是解题的关键.
7、D
【解析】
先利用合并同类项法则,单项式除以单项式,以及单项式乘以单项式法则计算即可得到结果.
【详解】
A、2x2+3x2=5x2,不符合题意;
B、2x2﹣3x2=﹣x2,不符合题意;
C、2x2÷3x2=,不符合题意;
D、2x23x2=6x4,符合题意,
故选:D.
【点睛】
本题主要考查了合并同类项法则,单项式除以单项式,单项式乘以单项式法则,正确掌握运算法则是解题关键.
8、B
【解析】
根据频数÷频率=总数可求出参加人数,根据分别求出5分、15分、0分的人数,即可求出平均分,根据0分的频率即可求出800人中0分的人数,根据中位数的定义求出中位数,对选项进行判断即可.
【详解】
∵5÷0.1=50(名),有50名同学参加知识竞赛,故选项A错误;
∵成绩5分、15分、0分的同学分别有:50×0.2=10(名),50×0.4=20(名),50﹣10﹣5﹣20﹣5=10(名)
∴抽到的同学参加知识竞赛的平均成绩为:=10,故选项B正确;
∵0分同学10人,其频率为0.2,
∴800名学生,得0分的估计有800×0.2=160(人),故选项C错误;
∵第25、26名同学的成绩为10分、15分,
∴抽到同学参加知识竞赛成绩的中位数为12.5分,故选项D错误.
故选:B.
【点睛】
本题考查利用频率估算概率,平均数及中位数的定义,熟练掌握相关知识是解题关键.
9、A
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解:将0.0000000076用科学计数法表示为.
故选A.
【点睛】
本题考查了用科学计数法表示较小的数,一般形式为a×,其中,n为由原数左边起第一个不为0的数字前面的0的个数所决定.
10、C
【解析】
试题分析:作AC⊥x轴于点C,作BD⊥x轴于点D.
则∠BDO=∠ACO=90°,则∠BOD+∠OBD=90°,
∵OA⊥OB,∴∠BOD+∠AOC=90°,∴∠BOD=∠AOC,∴△OBD∽△AOC,∴=(tanA)2=2,
又∵S△AOC=×2=1,∴S△OBD=2,∴k=-1.
故选C.
考点:1.相似三角形的判定与性质;2.反比例函数图象上点的坐标特征.
11、C
【解析】
由题可知“水平底”a的长度为3,则由“矩面积”为18可知“铅垂高”h=6,再分 >2或t<1两种情况进行求解即可.
【详解】
解:由题可知a=3,则h=18÷3=6,则可知t>2或t<1.当t>2时,t-1=6,解得t=7;当t<1时,2-t=6,解得t=-4.综上,t=-4或7.
故选择C.
【点睛】
本题考查了平面直角坐标系的内容,理解题意是解题关键.
12、B
【解析】
y<0时,即x轴下方的部分,
∴自变量x的取值范围分两个部分是−1
故选B.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、1
【解析】
作BD⊥AC于点D,在直角△ABD中,利用三角函数求得BD的长,然后在直角△BCD中,利用三角函数即可求得BC的长.
【详解】
∠CBA=25°+50°=75°,
作BD⊥AC于点D,
则∠CAB=(90°﹣70°)+(90°﹣50°)=20°+40°=60°,
∠ABD=30°,
∴∠CBD=75°﹣30°=45°,
在直角△ABD中,BD=AB•sin∠CAB=20×sin60°=20×=10,
在直角△BCD中,∠CBD=45°,
则BC=BD=10×=10≈10×2.4=1(海里),
故答案是:1.
【点睛】
本题考查了解直角三角形的应用——方向角问题,正确求得∠CBD以及∠CAB的度数是解决本题的关键.
14、
【解析】
共有3种等可能的结果,它们是:3,2,3;4, 2, 3;5, 2, 3;其中三条线段能够成三角形的结果为2,所以三条线段能构成三角形的概率= .故答案为.
15、3
【解析】
根据中位线定理得到MN的最大时,AC最大,当AC最大时是直径,从而求得直径后就可以求得最大值.
【详解】
解:因为点M、N分别是AB、BC的中点,
由三角形的中位线可知:MN=AC,
所以当AC最大为直径时,MN最大.这时∠B=90°
又因为∠ACB=45°,AB=6 解得AC=6
MN长的最大值是3.
故答案为:3.
【点睛】
本题考查了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的关键是了解当什么时候MN的值最大,难度不大.
16、15
【解析】
如图,等腰△ABC的内切圆⊙O是能从这块钢板上截得的最大圆,则由题意可知:AD和BF是△ABC的角平分线,AB=AC=50cm,BC=60cm,
∴∠ADB=90°,BD=CD=30cm,
∴AD=(cm),
连接圆心O和切点E,则∠BEO=90°,
又∵OD=OE,OB=OB,
∴△BEO≌△BDO,
∴BE=BD=30cm,
∴AE=AB-BE=50-30=20cm,
设OD=OE=x,则AO=40-x,
在Rt△AOE中,由勾股定理可得:,
解得:(cm).
即能截得的最大圆的半径为15cm.
故答案为:15.
点睛:(1)三角形中能够裁剪出的最大的圆是这个三角形的内切圆;(2)若三角形的三边长分别为a、b、c,面积为S,内切圆的半径为r,则.
17、
【解析】
试题解析:画树状图得:
由树状图可知:所有可能情况有12种,其中两次摸出的小球标号的和等于4的占2种,所以其概率=,
故答案为.
18、1
【解析】
由统计图可知共有:8+19+10+3=40人,中位数应为第20与第21个的平均数,
而第20个数和第21个数都是1(小时),则中位数是1小时.
故答案为1.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)y=x﹣3(2)1
【解析】
(1)由已知先求出a,得出点A的坐标,再把A的坐标代入一次函数y=kx-3求出k的值即可求出一次函数的解析式;
(2)易求点B、C的坐标分别为(n,),(n,n-3).设直线y=x-3与x轴、y轴分别交于点D、E,易得OD=OE=3,那么∠OED=45°.根据平行线的性质得到∠BCA=∠OED=45°,所以当△ABC是等腰直角三角形时只有AB=AC一种情况.过点A作AF⊥BC于F,根据等腰三角形三线合一的性质得出BF=FC,依此得出方程-1=1-(n-3),解方程即可.
【详解】
解:(1)∵反比例y=的图象过点A(4,a),
∴a==1,
∴A(4,1),
把A(4,1)代入一次函数y=kx﹣3,得4k﹣3=1,
∴k=1,
∴一次函数的解析式为y=x﹣3;
(2)由题意可知,点B、C的坐标分别为(n,),(n,n﹣3).
设直线y=x﹣3与x轴、y轴分别交于点D、E,如图,
当x=0时,y=﹣3;当y=0时,x=3,
∴OD=OE,
∴∠OED=45°.
∵直线x=n平行于y轴,
∴∠BCA=∠OED=45°,
∵△ABC是等腰直角三角形,且0<n<4,
∴只有AB=AC一种情况,
过点A作AF⊥BC于F,则BF=FC,F(n,1),
∴﹣1=1﹣(n﹣3),
解得n1=1,n2=4,
∵0<n<4,
∴n2=4舍去,
∴n的值是1.
【点睛】
本题考查了反比例函数与一次函数的交点问题,待定系数法求一次函数的解析式,等腰直角三角形的性质,难度适中.
20、(1)见解析;(1)见解析.
【解析】
(1)由全等三角形的判定定理AAS证得结论.
(1)由(1)中全等三角形的对应边相等推知点E是边DF的中点,∠1=∠1;根据角平分线的性质、等量代换以及等角对等边证得DC=FC,则由等腰三角形的“三合一”的性质推知CE⊥DF.
【详解】
解:(1)证明:如图,∵四边形ABCD是平行四边形,
∴AD∥BC.
又∵点F在CB的延长线上,
∴AD∥CF.
∴∠1=∠1.
∵点E是AB边的中点,
∴AE=BE,
∵在△ADE与△BFE中,,
∴△ADE≌△BFE(AAS).
(1)CE⊥DF.理由如下:
如图,连接CE,
由(1)知,△ADE≌△BFE,
∴DE=FE,即点E是DF的中点,∠1=∠1.
∵DF平分∠ADC,
∴∠1=∠2.
∴∠2=∠1.
∴CD=CF.
∴CE⊥DF.
21、(2)2;(2)y=x+2;(3).
【解析】
(2)确定A、B、C的坐标即可解决问题;
(2)理由待定系数法即可解决问题;
(3)作D关于x轴的对称点D′(0,-4),连接CD′交x轴于P,此时PC+PD的值最小,最小值=CD′的长.
【详解】
解:(2)∵反比例函数y=的图象上的点横坐标与纵坐标的积相同,
∴A(2,2),B(-2,-2),C(3,2)
∴k=2.
(2)设直线AB的解析式为y=mx+n,则有,
解得,
∴直线AB的解析式为y=x+2.
(3)∵C、D关于直线AB对称,
∴D(0,4)
作D关于x轴的对称点D′(0,-4),连接CD′交x轴于P,
此时PC+PD的值最小,最小值=CD′=.
【点睛】
本题考查反比例函数图象上的点的特征,一次函数的性质、反比例函数的性质、轴对称最短问题等知识,解题的关键是熟练掌握待定系数法确定函数解析式,学会利用轴对称解决最短问题.
22、(1);(2)
【解析】
(1)根据可能性只有男孩或女孩,直接得到其概率;
(2)列出所有的可能性,然后确定至少有一个女孩的可能性,然后可求概率.
【详解】
解:(1)(1)第二个孩子是女孩的概率=;
故答案为;
(2)画树状图为:
共有4种等可能的结果数,其中至少有一个孩子是女孩的结果数为3,
所以至少有一个孩子是女孩的概率=.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
23、(1)y=x2﹣2x﹣3;(2);(3)当k发生改变时,直线QH过定点,定点坐标为(0,﹣2)
【解析】
(1)把点A(﹣1,0),C(0,﹣3)代入抛物线表达式求得b,c,即可得出抛物线的解析式;
(2)作CH⊥EF于H,设N的坐标为(1,n),证明Rt△NCH∽△MNF,可得m=n2+3n+1,因为﹣4≤n≤0,即可得出m的取值范围;
(3)设点P(x1,y1),Q(x2,y2),则点H(﹣x1,y1),设直线HQ表达式为y=ax+t,用待定系数法和韦达定理可求得a=x2﹣x1,t=﹣2,即可得出直线QH过定点(0,﹣2).
【详解】
解:(1)∵抛物线y=x2+bx+c经过点A、C,
把点A(﹣1,0),C(0,﹣3)代入,得:,
解得,
∴抛物线的解析式为y=x2﹣2x﹣3;
(2)如图,作CH⊥EF于H,
∵y=x2﹣2x﹣3=(x﹣1)2﹣4,
∴抛物线的顶点坐标E(1,﹣4),
设N的坐标为(1,n),﹣4≤n≤0
∵∠MNC=90°,
∴∠CNH+∠MNF=90°,
又∵∠CNH+∠NCH=90°,
∴∠NCH=∠MNF,
又∵∠NHC=∠MFN=90°,
∴Rt△NCH∽△MNF,
∴,即
解得:m=n2+3n+1=,
∴当时,m最小值为;
当n=﹣4时,m有最大值,m的最大值=16﹣12+1=1.
∴m的取值范围是.
(3)设点P(x1,y1),Q(x2,y2),
∵过点P作x轴平行线交抛物线于点H,
∴H(﹣x1,y1),
∵y=kx+2,y=x2,
消去y得,x2﹣kx﹣2=0,
x1+x2=k,x1x2=﹣2,
设直线HQ表达式为y=ax+t,
将点Q(x2,y2),H(﹣x1,y1)代入,得,
∴y2﹣y1=a(x1+x2),即k(x2﹣x1)=ka,
∴a=x2﹣x1,
∵=( x2﹣x1)x2+t,
∴t=﹣2,
∴直线HQ表达式为y=( x2﹣x1)x﹣2,
∴当k发生改变时,直线QH过定点,定点坐标为(0,﹣2).
【点睛】
本题主要考查的是二次函数的综合应用,解答本题主要应用了配方法求二次函数的最值、待定系数法求一次函数的解析式、(2)问通过相似三角形建立m与n的函数关系式是解题的关键.
24、(1)40;(2)想去D景点的人数是8,圆心角度数是72°;(3)280.
【解析】
(1)用最想去A景点的人数除以它所占的百分比即可得到被调查的学生总人数;
(2)先计算出最想去D景点的人数,再补全条形统计图,然后用360°乘以最想去D景点的人数所占的百分比即可得到扇形统计图中表示“醉美旅游景点D”的扇形圆心角的度数;
(3)用800乘以样本中最想去B景点的人数所占的百分比即可.
【详解】
(1)被调查的学生总人数为8÷20%=40(人);
(2)最想去D景点的人数为40-8-14-4-6=8(人),
补全条形统计图为:
扇形统计图中表示“醉美旅游景点D”的扇形圆心角的度数为×360°=72°;
(3)800×=280,
所以估计“醉美旅游景点B“的学生人数为280人.
【点睛】
本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图和利用样本估计总体.
25、(1)6;8;B;(2)120人;(3)113分.
【解析】
(1)根据表格中的数据和扇形统计图中的数据可以求得本次抽查的人数,从而可以得到m、n的值,从而可以得到数学成绩的中位数所在的等级;
(2)根据表格中的数据可以求得D等级的人数;
(3)根据表格中的数据,可以计算出A等级学生的数学成绩的平均分数.
【详解】
(1)本次抽查的学生有:(人),
,
数学成绩的中位数所在的等级B,
故答案为:6,11,B;
(2)120(人),
答:D等级的约有120人;
(3)由表可得,
A等级学生的数学成绩的平均分数:(分),
即A等级学生的数学成绩的平均分是113分.
【点睛】
本题考查了扇形统计图、中位数、加权平均数,解答本题的关键是明确题意,利用数形结合的思想解答.
26、(1)详见解析;(2)详见解析;(3)2.
【解析】
(1)由BD是⊙O的切线得出∠DBA=90°,推出CH∥BD,证△AEC∽△AFD,得出比例式即可.
(2)证△AEC∽△AFD,△AHE∽△ABF,推出BF=DF,根据直角三角形斜边上中线性质得出CF=DF=BF即可.
(3)求出EF=FC,求出∠G=∠FAG,推出AF=FG,求出AB=BG,连接OC,BC,求出∠FCB=∠CAB推出CG是⊙O切线,由切割线定理(或△AGC∽△CGB)得出(2+FG)2=BG×AG=2BG2,在Rt△BFG中,由勾股定理得出BG2=FG2﹣BF2,推出FG2﹣4FG﹣12=0,求出FG即可,从而由勾股定理求得AB=BG
的长,从而得到⊙O的半径r.
27、(1)反比例函数的表达式y=,(2)点P坐标(,0), (3)S△PAB= 1.1.
【解析】
(1)把点A(1,a)代入一次函数中可得到A点坐标,再把A点坐标代入反比例解析式中即可得到反比例函数的表达式;(2)作点D关于x轴的对称点D,连接AD交x轴于点P,此时PA+PB的值最小.由B可知D点坐标,再由待定系数法求出直线AD的解析式,即可得到点P的坐标;(3)由S△PAB=S△ABD﹣S△PBD即可求出△PAB的面积.
解:(1)把点A(1,a)代入一次函数y=﹣x+4,
得a=﹣1+4,
解得a=3,
∴A(1,3),
点A(1,3)代入反比例函数y=,
得k=3,
∴反比例函数的表达式y=,
(2)把B(3,b)代入y=得,b=1
∴点B坐标(3,1);
作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,
∴D(3,﹣1),
设直线AD的解析式为y=mx+n,
把A,D两点代入得,, 解得m=﹣2,n=1,
∴直线AD的解析式为y=﹣2x+1,
令y=0,得x=,
∴点P坐标(,0),
(3)S△PAB=S△ABD﹣S△PBD=×2×2﹣×2×=2﹣=1.1.
点晴:本题是一道一次函数与反比例函数的综合题,并与几何图形结合在一起来求有关于最值方面的问题.此类问题的重点是在于通过待定系数法求出函数图象的解析式,再通过函数解析式反过来求坐标,为接下来求面积做好铺垫.
相关试卷
这是一份陕西省西安市长安区2021-2022学年中考数学仿真试卷含解析,共21页。
这是一份2021-2022学年陕西省西安市长安区中考数学押题试卷含解析,共20页。
这是一份2022年陕西省西安市西北工大附中中考猜题数学试卷含解析,共24页。