终身会员
搜索
    上传资料 赚现金
    2021-2022学年上海市浦东区中考数学模拟预测试卷含解析
    立即下载
    加入资料篮
    2021-2022学年上海市浦东区中考数学模拟预测试卷含解析01
    2021-2022学年上海市浦东区中考数学模拟预测试卷含解析02
    2021-2022学年上海市浦东区中考数学模拟预测试卷含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年上海市浦东区中考数学模拟预测试卷含解析

    展开
    这是一份2021-2022学年上海市浦东区中考数学模拟预测试卷含解析,共21页。试卷主要包含了的绝对值是,如果将直线l1等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是(  )

    A. B. C. D.
    2.若关于x的方程=3的解为正数,则m的取值范围是( )
    A.m< B.m<且m≠
    C.m>﹣ D.m>﹣且m≠﹣
    3.如图,是由7个大小相同的小正方体堆砌而成的几何体,若从标有①、②、③、④的四个小正方体中取走一个后,余下几何体与原几何体的主视图相同,则取走的正方体是(  )

    A.① B.② C.③ D.④
    4.如图,C,B是线段AD上的两点,若,,则AC与CD的关系为( )

    A. B. C. D.不能确定
    5.如图,在△ABC中,点D,E分别在边AB,AC上,且,则的值为

    A. B. C. D.
    6.的绝对值是(  )
    A.8 B.﹣8 C. D.﹣
    7.如图,是半圆的直径,点、是半圆的三等分点,弦.现将一飞镖掷向该图,则飞镖落在阴影区域的概率为(  )

    A. B. C. D.
    8.纳米是一种长度单位,1纳米=10-9米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示该种花粉的直径为(  )
    A.米 B.米 C.米 D.米
    9.如果将直线l1:y=2x﹣2平移后得到直线l2:y=2x,那么下列平移过程正确的是(  )
    A.将l1向左平移2个单位 B.将l1向右平移2个单位
    C.将l1向上平移2个单位 D.将l1向下平移2个单位
    10.如图是几何体的三视图,该几何体是( )

    A.圆锥 B.圆柱 C.三棱柱 D.三棱锥
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.在直角坐标系中,坐标轴上到点P(﹣3,﹣4)的距离等于5的点的坐标是  .
    12.为响应“书香成都”建设的号召,在全校形成良好的人文阅读风尚,成都市某中学随机调查了部分学生平均每天的阅读时间,统计结果如图所示,则在本次调查中,阅读时间的中位数是________小时.

    13.如果,那么代数式的值是______.
    14.一个布袋中装有1个蓝色球和2个红色球,这些球除颜色外其余都相同,随机摸出一个球后放回摇匀,再随机摸出一个球,则两次摸出的球都是红球的概率是_____.
    15.中国古代的数学专著《九章算术》有方程组问题“五只雀,六只燕,共重1斤(等于16两),雀重燕轻.互换其中一只,恰好一样重.”设每只雀、燕的重量各为x两,y两,则根据题意,可得方程组为___.
    16.A、B两地之间为直线距离且相距600千米,甲开车从A地出发前往B地,乙骑自行车从B地出发前往A地,已知乙比甲晚出发1小时,两车均匀速行驶,当甲到达B地后立即原路原速返回,在返回途中再次与乙相遇后两车都停止,如图是甲、乙两人之间的距离s(千类)与甲出发的时间t(小时)之间的图象,则当甲第二次与乙相遇时,乙离B地的距离为_____千米.

    三、解答题(共8题,共72分)
    17.(8分)如图,直线y=﹣x+3分别与x轴、y交于点B、C;抛物线y=x2+bx+c经过点B、C,与x轴的另一个交点为点A(点A在点B的左侧),对称轴为l1,顶点为D.

    (1)求抛物线y=x2+bx+c的解析式.
    (2)点M(1,m)为y轴上一动点,过点M作直线l2平行于x轴,与抛物线交于点P(x1,y1),Q(x2,y2),与直线BC交于点N(x3,y3),且x2>x1>1.
    ①结合函数的图象,求x3的取值范围;
    ②若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,求m的值.
    18.(8分)计算:; 解方程:
    19.(8分)某市A,B两个蔬菜基地得知四川C,D两个灾民安置点分别急需蔬菜240t和260t的消息后,决定调运蔬菜支援灾区,已知A蔬菜基地有蔬菜200t,B蔬菜基地有蔬菜300t,现将这些蔬菜全部调运C,D两个灾区安置点.从A地运往C,D两处的费用分别为每吨20元和25元,从B地运往C,D两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为x吨.请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值;

    C
    D
    总计/t
    A


    200
    B
    x

    300
    总计/t
    240
    260
    500
    (2)设A,B两个蔬菜基地的总运费为w元,求出w与x之间的函数关系式,并求
    总运费最小的调运方案;经过抢修,从B地到C处的路况得到进一步改善,缩短了运输时间,运费每吨减少m元(m>0),其余线路的运费不变,试讨论总运费最小的调动方案.
    20.(8分)如图,直角坐标系中,⊙M经过原点O(0,0),点A(,0)与点B(0,﹣1),点D在劣弧OA上,连接BD交x轴于点C,且∠COD=∠CBO.
    (1)请直接写出⊙M的直径,并求证BD平分∠ABO;
    (2)在线段BD的延长线上寻找一点E,使得直线AE恰好与⊙M相切,求此时点E的坐标.

    21.(8分)(1)计算:|﹣3|﹣﹣2sin30°+(﹣)﹣2
    (2)化简:.
    22.(10分)小晗家客厅装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏电灯,在正常情况下,小晗按下任意一个开关均可打开对应的一盏电灯,既可三盏、两盏齐开,也可分别单盏开.因刚搬进新房不久,不熟悉情况.若小晗任意按下一个开关,正好楼梯灯亮的概率是多少?若任意按下一个开关后,再按下另两个开关中的一个,则正好客厅灯和走廊灯同时亮的概率是多少?请用树状图或列表法加以说明.

    23.(12分)解方程组:
    24.如图,在△ABC中,AB=AC,若将△ABC绕点C顺时针旋转180°得到△EFC,连接AF、BE.
    (1)求证:四边形ABEF是平行四边形;
    (2)当∠ABC为多少度时,四边形ABEF为矩形?请说明理由.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    试题解析:如图所示:

    设BC=x,
    ∵在Rt△ABC中,∠B=90°,∠A=30°,
    ∴AC=2BC=2x,AB=BC=x,
    根据题意得:AD=BC=x,AE=DE=AB=x,
    作EM⊥AD于M,则AM=AD=x,
    在Rt△AEM中,cos∠EAD=;
    故选B.
    【点睛】本题考查了解直角三角形、含30°角的直角三角形的性质、等腰三角形的性质、三角函数等,通过作辅助线求出AM是解决问题的关键.
    2、B
    【解析】
    解:去分母得:x+m﹣3m=3x﹣9,
    整理得:2x=﹣2m+9,解得:x=,
    已知关于x的方程=3的解为正数,
    所以﹣2m+9>0,解得m<,
    当x=3时,x==3,解得:m=,
    所以m的取值范围是:m<且m≠.
    故答案选B.
    3、A
    【解析】
    根据题意得到原几何体的主视图,结合主视图选择.
    【详解】
    解:原几何体的主视图是:

    视图中每一个闭合的线框都表示物体上的一个平面,左侧的图形只需要两个正方体叠加即可.
    故取走的正方体是①.
    故选A.
    【点睛】
    本题考查了简单组合体的三视图,中等难度,作出几何体的主视图是解题关键.
    4、B
    【解析】
    由AB=CD,可得AC=BD,又BC=2AC,所以BC=2BD,所以CD=3AC.
    【详解】
    ∵AB=CD,
    ∴AC+BC=BC+BD,
    即AC=BD,
    又∵BC=2AC,
    ∴BC=2BD,
    ∴CD=3BD=3AC.
    故选B.
    【点睛】
    本题考查了线段长短的比较,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍转化线段之间的数量关系是十分关键的一点.
    5、C
    【解析】
    ∵,∠A=∠A,
    ∴△ABC∽△AED。∴。
    ∴。故选C。
    6、C
    【解析】
    根据绝对值的计算法则解答.如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:
    ①当a是正有理数时,a的绝对值是它本身a;
    ②当a是负有理数时,a的绝对值是它的相反数﹣a;
    ③当a是零时,a的绝对值是零.
    【详解】
    解:.
    故选
    【点睛】
    此题重点考查学生对绝对值的理解,熟练掌握绝对值的计算方法是解题的关键.
    7、D
    【解析】
    连接OC、OD、BD,根据点C,D是半圆O的三等分点,推导出OC∥BD且△BOD是等边三角形,阴影部分面积转化为扇形BOD的面积,分别计算出扇形BOD的面积和半圆的面积,然后根据概率公式即可得出答案.
    【详解】
    解:如图,连接OC、OD、BD,

    ∵点C、D是半圆O的三等分点,
    ∴,
    ∴∠AOC=∠COD=∠DOB=60°,
    ∵OC=OD,
    ∴△COD是等边三角形,
    ∴OC=OD=CD,
    ∵,
    ∴,
    ∵OB=OD,
    ∴△BOD是等边三角形,则∠ODB=60°,
    ∴∠ODB=∠COD=60°,
    ∴OC∥BD,
    ∴,
    ∴S阴影=S扇形OBD,
    S半圆O,
    飞镖落在阴影区域的概率,
    故选:D.
    【点睛】
    本题主要考查扇形面积的计算和几何概率问题:概率=相应的面积与总面积之比,解题的关键是把求不规则图形的面积转化为求规则图形的面积.
    8、C
    【解析】
    绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    【详解】
    35000纳米=35000×10-9米=3.5×10-5米.
    故选C.
    【点睛】
    此题主要考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
    9、C
    【解析】
    根据“上加下减”的原则求解即可.
    【详解】
    将函数y=2x﹣2的图象向上平移2个单位长度,所得图象对应的函数解析式是y=2x.
    故选:C.
    【点睛】
    本题考查的是一次函数的图象与几何变换,熟知函数图象变换的法则是解答此题的关键.
    10、C
    【解析】
    分析:根据一个空间几何体的主视图和左视图都是长方形,可判断该几何体是柱体,进而根据俯视图的形状,可判断是三棱柱,得到答案.
    详解:∵几何体的主视图和左视图都是长方形,
    故该几何体是一个柱体,
    又∵俯视图是一个三角形,
    故该几何体是一个三棱柱,
    故选C.
    点睛:本题考查的知识点是三视图,如果有两个视图为三角形,该几何体一定是锥,如果有两个矩形,该几何体一定柱,其底面由第三个视图的形状决定.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、(0,0)或(0,﹣8)或(﹣6,0)
    【解析】
    由P(﹣3,﹣4)可知,P到原点距离为5,而以P点为圆心,5为半径画圆,圆经过原点分别与x轴、y轴交于另外一点,共有三个.
    【详解】
    解:∵P(﹣3,﹣4)到原点距离为5,
    而以P点为圆心,5为半径画圆,圆经过原点且分别交x轴、y轴于另外两点(如图所示),
    ∴故坐标轴上到P点距离等于5的点有三个:(0,0)或(0,﹣8)或(﹣6,0).
    故答案是:(0,0)或(0,﹣8)或(﹣6,0).

    12、1
    【解析】
    由统计图可知共有:8+19+10+3=40人,中位数应为第20与第21个的平均数,
    而第20个数和第21个数都是1(小时),则中位数是1小时.
    故答案为1.
    13、1
    【解析】
    分析:对所求代数式根据分式的混合运算顺序进行化简,再把变形后整体代入即可.
    详解:




    故答案为1.
    点睛:考查分式的混合运算,掌握运算顺序是解题的关键.注意整体代入法的运用.
    14、
    【解析】
    首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球都是红球的情况,再利用概率公式即可求出答案.
    【详解】
    画树状图得:

    ∵共有9种等可能的结果,两次摸出的球都是红球的由4种情况,
    ∴两次摸出的球都是红球的概率是,
    故答案为.
    【点睛】
    本题主要考查了求随机事件概率的方法,解本题的要点在于根据题意画出树状图,从而求出答案.
    15、
    【解析】
    设每只雀、燕的重量各为x两,y两,由题意得:

    故答案是:或 .
    16、
    【解析】
    根据题意和函数图象可以分别求得甲乙的速度,从而可以得到当甲第二次与乙相遇时,乙离B地的距离.
    【详解】
    设甲的速度为akm/h,乙的速度为bkm/h,

    解得,,
    设第二次甲追上乙的时间为m小时,
    100m﹣25(m﹣1)=600,
    解得,m=,
    ∴当甲第二次与乙相遇时,乙离B地的距离为:25×(-1)=千米,
    故答案为.
    【点睛】
    本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.

    三、解答题(共8题,共72分)
    17、(2)y=x2﹣4x+3;(2)①2<x3<4,②m的值为或2.
    【解析】
    (2)由直线y=﹣x+3分别与x轴、y交于点B、C求得点B、C的坐标,再代入y=x2+bx+c求得b、c的值,即可求得抛物线的解析式;(2)①先求得抛物线的顶点坐标为D(2,﹣2),当直线l2经过点D时求得m=﹣2;当直线l2经过点C时求得m=3,再由x2>x2>2,可得﹣2<y3<3,即可﹣2<﹣x3+3<3,所以2<x3<4;②分当直线l2在x轴的下方时,点Q在点P、N之间和当直线l2在x轴的上方时,点N在点P、Q之间两种情况求m的值即可.
    【详解】
    (2)在y=﹣x+3中,令x=2,则y=3;
    令y=2,则x=3;得B(3,2),C(2,3),
    将点B(3,2),C(2,3)的坐标代入y=x2+bx+c
    得:,解得
    ∴y=x2﹣4x+3;
    (2)∵直线l2平行于x轴,
    ∴y2=y2=y3=m,
    ①如图①,y=x2﹣4x+3=(x﹣2)2﹣2,
    ∴顶点为D(2,﹣2),
    当直线l2经过点D时,m=﹣2;
    当直线l2经过点C时,m=3
    ∵x2>x2>2,
    ∴﹣2<y3<3,
    即﹣2<﹣x3+3<3,
    得2<x3<4,
    ②如图①,当直线l2在x轴的下方时,点Q在点P、N之间,
    若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,则得PQ=QN.
    ∵x2>x2>2,
    ∴x3﹣x2=x2﹣x2,
    即 x3=2x2﹣x2,
    ∵l2∥x轴,即PQ∥x轴,
    ∴点P、Q关于抛物线的对称轴l2对称,
    又抛物线的对称轴l2为x=2,
    ∴2﹣x2=x2﹣2,
    即x2=4﹣x2,
    ∴x3=3x2﹣4,
    将点Q(x2,y2)的坐标代入y=x2﹣4x+3
    得y2=x22﹣4x2+3,又y2=y3=﹣x3+3
    ∴x22﹣4x2+3=﹣x3+3,
    ∴x22﹣4x2=﹣(3x2﹣4)
    即 x22﹣x2﹣4=2,解得x2=,(负值已舍去),
    ∴m=()2﹣4×+3=
    如图②,当直线l2在x轴的上方时,点N在点P、Q之间,

    若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,则得PN=NQ.
    由上可得点P、Q关于直线l2对称,
    ∴点N在抛物线的对称轴l2:x=2,
    又点N在直线y=﹣x+3上,
    ∴y3=﹣2+3=2,即m=2.
    故m的值为或2.
    【点睛】
    本题是二次函数综合题,
    本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、线段的中点及分类讨论思想等知识.在(2)中注意待定系数法的应用;在(2)①注意利用数形结合思想;在(2)②注意分情况讨论.本题考查知识点较多,综合性较强,难度较大.
    18、(1)2 (2)
    【解析】
    (1)原式第一项利用负指数幂法则计算,第二项利用特殊角的三角函数值化简,第三项利用绝对值的代数意义化简,最后一项利用零指数幂法则计算可得到结果;(2)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.
    【详解】
    (1)原式==2;
    (2)



    【点睛】
    本题考查了实数运算以及平方根的应用,正确掌握相关运算法则是解题的关键.
    19、(1)见解析;(2)w=2x+9200,方案见解析;(3)0 【解析】
    (1)根据题意可得解.
    (2)w与x之间的函数关系式为:w=20(240−x)+25(x−40)+15x+18(300−x);列不等式组解出40≤x≤240,可由w随x的增大而增大,得出总运费最小的调运方案.
    (3)根据题意得出w与x之间的函数关系式,然后根据m的取值范围不同分别分析得出总运费最小的调运方案.
    【详解】
    解:(1)填表:

    依题意得:20(240−x)+25(x−40)=15x+18(300−x).
    解得:x=200.
    (2)w与x之间的函数关系为:w=20(240−x)+25(x−40)+15x+18(300−x)=2x+9200.
    依题意得:
    ∴40⩽x⩽240
    在w=2x+9200中,∵2>0,
    ∴w随x的增大而增大,
    故当x=40时,总运费最小,
    此时调运方案为如表.

    (3)由题意知w=20(240−x)+25(x−40)+(15-m)x+18(300−x)=(2−m)x+9200
    ∴0 m=2时,在40⩽x⩽240的前提下调运
    方案的总运费不变;
    2 其调运方案如表二.

    【点睛】
    此题考查一次函数的应用,解题关键在于根据题意列出w与x之间的函数关系式,并注意分类讨论思想的应用.
    20、(1)详见解析;(2)(,1).
    【解析】
    (1)根据勾股定理可得AB的长,即⊙M的直径,根据同弧所对的圆周角可得BD平分∠ABO;
    (2)作辅助构建切线AE,根据特殊的三角函数值可得∠OAB=30°,分别计算EF和AF的长,可得点E的坐标.
    【详解】
    (1)∵点A(,0)与点B(0,﹣1),
    ∴OA=,OB=1,
    ∴AB==2,
    ∵AB是⊙M的直径,
    ∴⊙M的直径为2,
    ∵∠COD=∠CBO,∠COD=∠CBA,
    ∴∠CBO=∠CBA,
    即BD平分∠ABO;
    (2)如图,过点A作AE⊥AB于E,交BD的延长线于点E,过E作EF⊥OA于F,即AE是切线,
    ∵在Rt△ACB中,tan∠OAB=,
    ∴∠OAB=30°,
    ∵∠ABO=90°,
    ∴∠OBA=60°,
    ∴∠ABC=∠OBC==30°,
    ∴OC=OB•tan30°=1×,
    ∴AC=OA﹣OC=,
    ∴∠ACE=∠ABC+∠OAB=60°,
    ∴∠EAC=60°,
    ∴△ACE是等边三角形,
    ∴AE=AC=,
    ∴AF=AE=,EF==1,
    ∴OF=OA﹣AF=,
    ∴点E的坐标为(,1).

    【点睛】
    此题属于圆的综合题,考查了勾股定理、圆周角定理、等边三角形的判定与性质以及三角函数等知识.注意准确作出辅助线是解此题的关键.
    21、 (1)2;(2) x﹣y.
    【解析】
    分析:(1)本题涉及了二次根式的化简、绝对值、负指数幂及特殊三角函数值,在计算时,需要针对每个知识 点分别进行计算,然后根据实数的运算法则求得计算结果.(2)原式括号中两项利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.
    详解:(1)原式=3﹣4﹣2×+4=2;
    (2)原式=•=x﹣y.
    点睛:(1)本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、二次根式的化简、绝对值及特殊三角函数值等考点的运算;(2)考查了分式的混合运算,熟练掌握运算法则是解本题的关键.
    22、(1);(2).
    【解析】
    试题分析:(1)、3个等只有一个控制楼梯,则概率就是1÷3;(2)、根据题意画出树状图,然后根据概率的计算法则得出概率.
    试题解析:(1)、小晗任意按下一个开关,正好楼梯灯亮的概率是:
    (2)、画树状图得:

    结果:(A,B)、(A,C)、(B,A)、(B,C)、(C,A)、(C,B)
    ∵共有6种等可能的结果,正好客厅灯和走廊灯同时亮的有2种情况,
    ∴正好客厅灯和走廊灯同时亮的概率是=.
    考点:概率的计算.
    23、
    【解析】
    设=a, =b,则原方程组化为,求出方程组的解,再求出原方程组的解即可.
    【详解】
    设=a, =b,
    则原方程组化为:,
    ①+②得:4a=4,
    解得:a=1,
    把a=1代入①得:1+b=3,
    解得:b=2,
    即,
    解得:,
    经检验是原方程组的解,
    所以原方程组的解是.
    【点睛】
    此题考查利用换元法解方程组,注意要根据方程组的特点灵活选用合适的方法. 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.
    24、(1)证明见解析(2)当∠ABC=60°时,四边形ABEF为矩形
    【解析】
    (1)根据旋转得出CA=CE,CB=CF,根据平行四边形的判定得出即可;
    (2)根据等边三角形的判定得出△ABC是等边三角形,求出AE=BF,根据矩形的判定得出即可.
    【详解】
    (1)∵将△ABC绕点C顺时针旋转180°得到△EFC,∴△ABC≌△EFC,∴CA=CE,CB=CF,∴四边形ABEF是平行四边形;
    (2)当∠ABC=60°时,四边形ABEF为矩形,理由是:∵∠ABC=60°,AB=AC,∴△ABC是等边三角形,∴AB=AC=BC.
    ∵CA=CE,CB=CF,∴AE=BF.
    ∵四边形ABEF是平行四边形,∴四边形ABEF是矩形.
    【点睛】
    本题考查了旋转的性质和矩形的判定、平行四边形的判定、等边三角形的性质和判定等知识点,能综合运用知识点进行推理是解答此题的关键.

    相关试卷

    上海市浦东区2021-2022学年中考数学模拟精编试卷含解析: 这是一份上海市浦东区2021-2022学年中考数学模拟精编试卷含解析,共19页。试卷主要包含了下列计算正确的是,在平面直角坐标系中,已知点A,计算结果是,下列各数是不等式组的解是等内容,欢迎下载使用。

    上海市嘉定区重点中学2021-2022学年中考数学模拟预测题含解析: 这是一份上海市嘉定区重点中学2021-2022学年中考数学模拟预测题含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,下列代数运算正确的是等内容,欢迎下载使用。

    上海市存志中学2021-2022学年中考数学模拟预测题含解析: 这是一份上海市存志中学2021-2022学年中考数学模拟预测题含解析,共24页。试卷主要包含了下列等式正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map