2021-2022学年新余市重点中学中考数学押题卷含解析
展开
这是一份2021-2022学年新余市重点中学中考数学押题卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,函数y=的自变量x的取值范围是,估计的值在等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.下列图标中,是中心对称图形的是( )
A. B.
C. D.
2.如图是二次函数y=ax2+bx+c的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a+2b+c<0;④若(-,y1),(,y2)是抛物线上两点,则y1<y2,其中结论正确的是( )
A.①② B.②③ C.②④ D.①③④
3.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E等于( )
A.42° B.28° C.21° D.20°
4.据统计, 2015年广州地铁日均客运量均为人次,将用科学记数法表示为( )
A. B. C. D.
5.矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=( )
A.1 B. C. D.
6.函数y=的自变量x的取值范围是( )
A.x≠2 B.x<2 C.x≥2 D.x>2
7.如图是一个由5个相同的正方体组成的立体图形,它的三视图是( )
A. B.
C. D.
8.估计的值在( )
A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间
9.如图,平行四边形ABCD中,点A在反比例函数y=(k≠0)的图象上,点D在y轴上,点B、点C在x轴上.若平行四边形ABCD的面积为10,则k的值是( )
A.﹣10 B.﹣5 C.5 D.10
10.如图,在中,E为边CD上一点,将沿AE折叠至处,与CE交于点F,若,,则的大小为( )
A.20° B.30° C.36° D.40°
二、填空题(本大题共6个小题,每小题3分,共18分)
11.若关于x的一元二次方程(a﹣1)x2﹣x+1=0有实数根,则a的取值范围为________.
12.如图,一下水管道横截面为圆形,直径为100cm,下雨前水面宽为60cm,一场大雨过后,水面宽为80cm,则水位上升______cm.
13.如图,在四边形ABCD中,,AC、BD相交于点E,若,则______.
14.如图,已知一次函数y=ax+b和反比例函数的图象相交于A(﹣2,y1)、B(1,y2)两点,则不等式ax+b<的解集为 __________
15.江苏省的面积约为101 600km1,这个数据用科学记数法可表示为_______km1.
16.下列说法正确的是_____.(请直接填写序号)
①“若a>b,则>.”是真命题.②六边形的内角和是其外角和的2倍.③函数y= 的自变量的取值范围是x≥﹣1.④三角形的中位线平行于第三边,并且等于第三边的一半.⑤正方形既是轴对称图形,又是中心对称图形.
三、解答题(共8题,共72分)
17.(8分)已知,在菱形ABCD中,∠ADC=60°,点H为CD上任意一点(不与C、D重合),过点H作CD的垂线,交BD于点E,连接AE.
(1)如图1,线段EH、CH、AE之间的数量关系是 ;
(2)如图2,将△DHE绕点D顺时针旋转,当点E、H、C在一条直线上时,求证:AE+EH=CH.
18.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC交于点D,过点D作∠ABD=∠ADE,交AC于点E.
(1)求证:DE为⊙O的切线.
(2)若⊙O的半径为,AD=,求CE的长.
19.(8分)如图所示,在坡角为30°的山坡上有一竖立的旗杆AB,其正前方矗立一墙,当阳光与水平线成45°角时,测得旗杆AB落在坡上的影子BD的长为8米,落在墙上的影子CD的长为6米,求旗杆AB的高(结果保留根号).
20.(8分)某校检测学生跳绳水平,抽样调查了部分学生的“1分钟跳绳”成绩,并制成了下面的频数分布直方图(每小组含最小值,不含最大值)和扇形图
(1)D组的人数是 人,补全频数分布直方图,扇形图中m= ;
(2)本次调查数据中的中位数落在 组;
(3)如果“1分钟跳绳”成绩大于或等于120次为优秀,那么该校4500名学生中“1分钟跳绳”成绩为优秀的大约有多少人?
21.(8分)已知:如图,E,F是▱ABCD的对角线AC上的两点,BE∥DF.
求证:AF=CE.
22.(10分)2018年春节,西安市政府实施“点亮工程”,开展“西安年·最中国”活动,元宵节晚上,小明一家人到“大唐不夜城”游玩,看美景、品美食。在美食一条街上,小明买了一碗元宵,共5个,其中黑芝麻馅两个,五仁馅两个,桂花馅一个,当元宵端上来的时候,看着五个大小、色泽一模一样的元宵,小明的爸爸问了小明两个问题:
(1)小明吃到第一个元宵是五仁馅的概率是多少?请你帮小明直接写出答案。
(2)小明吃的前两个元宵是同一种馅的元宵概率是多少?请你利用你列表或树状图帮小明求出概率。
23.(12分) 某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.
根据统计图的信息解决下列问题:
(1)本次调查的学生有多少人?
(2)补全上面的条形统计图;
(3)扇形统计图中C对应的中心角度数是 ;
(4)若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?
24.如图1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.
(1)OC的长为 ;
(2)D是OA上一点,以BD为直径作⊙M,⊙M交AB于点Q.当⊙M与y轴相切时,sin∠BOQ= ;
(3)如图2,动点P以每秒1个单位长度的速度,从点O沿线段OA向点A运动;同时动点D以相同的速度,从点B沿折线B﹣C﹣O向点O运动.当点P到达点A时,两点同时停止运动.过点P作直线PE∥OC,与折线O﹣B﹣A交于点E.设点P运动的时间为t(秒).求当以B、D、E为顶点的三角形是直角三角形时点E的坐标.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
根据中心对称图形的概念 对各选项分析判断即可得解.
【详解】
解:A、不是中心对称图形,故本选项错误;
B、是中心对称图形,故本选项正确;
C、不是中心对称图形,故本选项错误;
D、不是中心对称图形,故本选项错误.
故选B.
【点睛】
本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.
2、C
【解析】
试题分析:根据题意可得:a0,b0,c0,则abc0,则①错误;根据对称轴为x=1可得:=1,则-b=2a,即2a+b=0,则②正确;根据函数的轴对称可得:当x=2时,y0,即4a+2b+c0,则③错误;对于开口向下的函数,离对称轴越近则函数值越大,则,则④正确.
点睛:本题主要考查的就是二次函数的性质,属于中等题.如果开口向上,则a0,如果开口向下,则a0;如果对称轴在y轴左边,则b的符号与a相同,如果对称轴在y轴右边,则b的符号与a相反;如果题目中出现2a+b和2a-b的时候,我们要看对称轴与1或者-1的大小关系再进行判定;如果出现a+b+c,则看x=1时y的值;如果出现a-b+c,则看x=-1时y的值;如果出现4a+2b+c,则看x=2时y的值,以此类推;对于开口向上的函数,离对称轴越远则函数值越大,对于开口向下的函数,离对称轴越近则函数值越大.
3、B
【解析】
利用OB=DE,OB=OD得到DO=DE,则∠E=∠DOE,根据三角形外角性质得∠1=∠DOE+∠E,所以∠1=2∠E,同理得到∠AOC=∠C+∠E=3∠E,然后利用∠E=∠AOC进行计算即可.
【详解】
解:连结OD,如图,
∵OB=DE,OB=OD,
∴DO=DE,
∴∠E=∠DOE,
∵∠1=∠DOE+∠E,
∴∠1=2∠E,
而OC=OD,
∴∠C=∠1,
∴∠C=2∠E,
∴∠AOC=∠C+∠E=3∠E,
∴∠E=∠AOC=×84°=28°.
故选:B.
【点睛】
本题考查了圆的认识:掌握与圆有关的概念( 弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了等腰三角形的性质.
4、D
【解析】
科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.
【详解】
解:6 590 000=6.59×1.
故选:D.
【点睛】
本题考查学生对科学记数法的掌握,一定要注意a的形式,以及指数n的确定方法.
5、C
【解析】
分析:延长GH交AD于点P,先证△APH≌△FGH得AP=GF=1,GH=PH=PG,再利用勾股定理求得PG=,从而得出答案.
详解:如图,延长GH交AD于点P,
∵四边形ABCD和四边形CEFG都是矩形,
∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,
∴AD∥GF,
∴∠GFH=∠PAH,
又∵H是AF的中点,
∴AH=FH,
在△APH和△FGH中,
∵,
∴△APH≌△FGH(ASA),
∴AP=GF=1,GH=PH=PG,
∴PD=AD﹣AP=1,
∵CG=2、CD=1,
∴DG=1,
则GH=PG=×=,
故选:C.
点睛:本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.
6、D
【解析】
根据被开放式的非负性和分母不等于零列出不等式即可解题.
【详解】
解:∵函数y=有意义,
∴x-20,
即x>2
故选D
【点睛】
本题考查了根式有意义的条件,属于简单题,注意分母也不能等于零是解题关键.
7、D
【解析】
找到从正面、左面、上看所得到的图形即可,注意所有的看到的棱都应表现在视图中.
【详解】
解:此几何体的主视图有两排,从上往下分别有1,3个正方形;
左视图有二列,从左往右分别有2,1个正方形;
俯视图有三列,从上往下分别有3,1个正方形,
故选A.
【点睛】
本题考查了三视图的知识,关键是掌握三视图所看的位置.掌握定义是关键.
此题主要考查了简单组合体的三视图,准确把握观察角度是解题关键.
8、D
【解析】
寻找小于26的最大平方数和大于26的最小平方数即可.
【详解】
解:小于26的最大平方数为25,大于26的最小平方数为36,故,即:
,故选择D.
【点睛】
本题考查了二次根式的相关定义.
9、A
【解析】
作AE⊥BC于E,由四边形ABCD为平行四边形得AD∥x轴,则可判断四边形ADOE为矩形,所以S平行四边形ABCD=S矩形ADOE,根据反比例函数k的几何意义得到S矩形ADOE=|−k|,利用反比例函数图象得到.
【详解】
作AE⊥BC于E,如图,
∵四边形ABCD为平行四边形,
∴AD∥x轴,
∴四边形ADOE为矩形,
∴S平行四边形ABCD=S矩形ADOE,
而S矩形ADOE=|−k|,
∴|−k|=1,
∵k<0,
∴k=−1.
故选A.
【点睛】
本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.
10、C
【解析】
由平行四边形的性质得出∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性质求出∠AEF=72°,由三角形内角和定理求出∠AED′=108°,即可得出∠FED′的大小.
【详解】
∵四边形ABCD是平行四边形,
∴,
由折叠的性质得:,,
∴,,
∴;
故选C.
【点睛】
本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质和折叠的性质,求出∠AEF和∠AED′是解决问题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、a≤且a≠1.
【解析】
根据一元二次方程有实数根的条件列出关于a的不等式组,求出a的取值范围即可.
【详解】
由题意得:△≥0,即(-1)2-4(a-1)×1≥0,
解得a≤,
又a-1≠0,
∴a≤且a≠1.
故答案为a≤且a≠1.
点睛:本题考查的是根的判别式及一元二次方程的定义,根据题意列出关于a的不等式组是解答此题的关键.
12、10或1
【解析】
分水位在圆心下以及圆心上两种情况,画出符合题意的图形进行求解即可得.
【详解】
如图,作半径于C,连接OB,
由垂径定理得:=AB=×60=30cm,
在中,,
当水位上升到圆心以下时 水面宽80cm时,
则,
水面上升的高度为:;
当水位上升到圆心以上时,水面上升的高度为:,
综上可得,水面上升的高度为30cm或1cm,
故答案为:10或1.
【点睛】
本题考查了垂径定理的应用,掌握垂径定理、灵活运用分类讨论的思想是解题的关键.
13、
【解析】
利用相似三角形的性质即可求解;
【详解】
解:∵ AB∥CD,
∴△AEB∽△CED,
∴ ,
∴ ,
故答案为 .
【点睛】
本题考查相似三角形的性质和判定,解题的关键是熟练掌握相似三角形的性质.
14、﹣2<x<0或x>1
【解析】
根据一次函数图象与反比例函数图象的上下位置关系结合交点坐标,即可得出不等式的解集.
【详解】
观察函数图象,发现:当﹣2<x<0或x>1时,一次函数图象在反比例函数图象的下方,
∴不等式ax+b<的解集是﹣2<x<0或x>1.
【点睛】
本题主要考查一次函数图象与反比例函数图象,数形结合思想是关键.
15、1.016×105
【解析】
科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂,
【详解】
解:101 600=1.016×105
故答案为:1.016×105
【点睛】
本题考查科学计数法,掌握概念正确表示是本题的解题关键.
16、②④⑤
【解析】
根据不等式的性质可确定①的对错,根据多边形的内外角和可确定②的对错,根据函数自变量的取值范围可确定③的对错,根据三角形中位线的性质可确定④的对错,根据正方形的性质可确定⑤的对错.
【详解】
①“若a>b,当c<0时,则
相关试卷
这是一份2021-2022学年宁德市重点中学中考数学押题卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,下列各式中,计算正确的是,下列运算正确的是等内容,欢迎下载使用。
这是一份2021-2022学年临汾市重点中学中考押题数学预测卷含解析,共16页。试卷主要包含了下列运算结果正确的是等内容,欢迎下载使用。
这是一份2021-2022学年金华市重点中学中考押题数学预测卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,下列各式计算正确的是等内容,欢迎下载使用。