2021-2022学年中山市重点中学中考数学押题卷含解析
展开
这是一份2021-2022学年中山市重点中学中考数学押题卷含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.计算(﹣)﹣1的结果是( )
A.﹣ B. C.2 D.﹣2
2.如图,小岛在港口P的北偏西60°方向,距港口56海里的A处,货船从港口P出发,沿北偏东45°方向匀速驶离港口,4小时后货船在小岛的正东方向,则货船的航行速度是( )
A.7海里/时 B.7海里/时 C.7海里/时 D.28海里/时
3.下列图形中,既是中心对称图形又是轴对称图形的是( )
A.正五边形 B.平行四边形 C.矩形 D.等边三角形
4.如图,直线AB与直线CD相交于点O,E是∠COB内一点,且OE⊥AB,∠AOC=35°,则∠EOD的度数是( )
A.155° B.145° C.135° D.125°
5.如图,点A为∠α边上任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示sinα的值,错误的是( )
A. B. C. D.
6.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与相似的是( )
A. B.
C. D.
7.如图,在矩形AOBC中,O为坐标原点,OA、OB分别在x轴、y轴上,点B的坐标为(0,3),∠ABO=30°,将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为( )
A.(,) B.(2,) C.(,) D.(,3﹣)
8.如图,已知AB∥CD,DE⊥AF,垂足为E,若∠CAB=50°,则∠D的度数为( )
A.30° B.40° C.50° D.60°
9.如图,小刚从山脚A出发,沿坡角为的山坡向上走了300米到达B点,则小刚上升了( )
A.米 B.米 C.米 D.米
10.如图,在平面直角坐标系中,△ABC与△A1B1C1是以点P为位似中心的位似图形,且顶点都在格点上,则点P的坐标为( )
A.(﹣4,﹣3) B.(﹣3,﹣4) C.(﹣3,﹣3) D.(﹣4,﹣4)
二、填空题(共7小题,每小题3分,满分21分)
11.一只不透明的袋子中装有红球和白球共30个,这些球除了颜色外都相同,校课外学习小组做摸球实验,将球搅匀后任意摸出一个球,记下颜色后放回,搅匀,通过多次重复试验,算得摸到红球的频率是0.2,则袋中有________个红球.
12.计算:=_____________.
13.如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,过D点作AB的垂线交AC于点E,BC=6,sinA=,则DE=_____.
14.如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是______.
15.如图,在平面直角坐标系xOy中,四边形OABC是正方形,点C(0,4),D是OA中点,将△CDO以C为旋转中心逆时针旋转90°后,再将得到的三角形平移,使点C与点O重合,写出此时点D的对应点的坐标:_____.
16.已知,如图,正方形ABCD的边长是8,M在DC上,且DM=2,N是AC边上的一动点,则DN+MN的最小值是_____.
17.关于x的分式方程=2的解为正实数,则实数a的取值范围为_____.
三、解答题(共7小题,满分69分)
18.(10分)甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量(件)与时间(时)的函数图象如图所示.
(1)求甲组加工零件的数量y与时间之间的函数关系式.
(2)求乙组加工零件总量的值.
(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?
19.(5分)某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”三个等级,并根据调查结果绘制了如下两幅不完整的统计图.
(1)这次调查的市民人数为________人,m=________,n=________;
(2)补全条形统计图;
(3)若该市约有市民100000人,请你根据抽样调查的结果,估计该市大约有多少人对“社会主义核心价值观”达到“A.非常了解”的程度.
20.(8分)工人小王生产甲、乙两种产品,生产产品件数与所用时间之间的关系如表:
生产甲产品件数(件)
生产乙产品件数(件)
所用总时间(分钟)
10
10
350
30
20
850
(1)小王每生产一件甲种产品和每生产一件乙种产品分别需要多少分钟?
(2)小王每天工作8个小时,每月工作25天.如果小王四月份生产甲种产品a件(a为正整数).
①用含a的代数式表示小王四月份生产乙种产品的件数;
②已知每生产一件甲产品可得1.50元,每生产一件乙种产品可得2.80元,若小王四月份的工资不少于1500元,求a的取值范围.
21.(10分)如图,在平面直角坐标系中,直线y=x+4与x轴、y轴分别交于A、B两点,抛物线y=-x2+bx+c经过A、B两点,并与x轴交于另一点C(点C点A的右侧),点P是抛物线上一动点.
(1)求抛物线的解析式及点C的坐标;
(2)若点P在第二象限内,过点P作PD⊥轴于D,交AB于点E.当点P运动到什么位置时,线段PE最长?此时PE等于多少?
(3)如果平行于x轴的动直线l与抛物线交于点Q,与直线AB交于点N,点M为OA的中点,那么是否存在这样的直线l,使得△MON是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.
22.(10分)如图,直线y=x+2与双曲线y=相交于点A(m,3),与x轴交于点C.求双曲线的解析式;点P在x轴上,如果△ACP的面积为3,求点P的坐标.
23.(12分)如图1,在正方形ABCD中,E是边BC的中点,F是CD上一点,已知∠AEF=90°.
(1)求证:;
(2)平行四边形ABCD中,E是边BC上一点,F是边CD上一点,∠AFE=∠ADC,∠AEF=90°.
①如图2,若∠AFE=45°,求的值;
②如图3,若AB=BC,EC=3CF,直接写出cos∠AFE的值.
24.(14分)如图,抛物线y=﹣x2﹣x+4与x轴交于A,B两点(A在B的左侧),与y轴交于点C.
(1)求点A,点B的坐标;
(2)P为第二象限抛物线上的一个动点,求△ACP面积的最大值.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
根据负整数指数幂与正整数指数幂互为倒数,可得答案.
【详解】
解: ,
故选D.
【点睛】
本题考查了负整数指数幂,负整数指数幂与正整数指数幂互为倒数.
2、A
【解析】
试题解析:设货船的航行速度为海里/时,小时后货船在点处,作于点.
由题意海里,海里,
在中,
所以
在中,
所以
所以
解得:
故选A.
3、C
【解析】
分析:根据中心对称图形和轴对称图形对各选项分析判断即可得解.
详解:A. 正五边形,不是中心对称图形,是轴对称图形,故本选项错误.
B. 平行四边形,是中心对称图形,不是轴对称图形,故本选项错误.
C. 矩形,既是中心对称图形又是轴对称图形,故本选项正确.
D. 等边三角形,不是中心对称图形,是轴对称图形,故本选项错误.
故选C.
点睛:本题考查了对中心对称图形和轴对称图形的判断,我们要熟练掌握一些常见图形属于哪一类图形,这样在实际解题时,可以加快解题速度,也可以提高正确率.
4、D
【解析】
解:∵
∴
∵EO⊥AB,
∴
∴
故选D.
5、D
【解析】
【分析】根据在直角三角形中,锐角的正弦为对边比斜边,可得答案.
【详解】∵∠BDC=90°,∴∠B+∠BCD=90°,
∵∠ACB=90°,即∠BCD+∠ACD=90°,
∴∠ACD=∠B=α,
A、在Rt△BCD中,sinα=,故A正确,不符合题意;
B、在Rt△ABC中,sinα=,故B正确,不符合题意;
C、在Rt△ACD中,sinα=,故C正确,不符合题意;
D、在Rt△ACD中,cosα=,故D错误,符合题意,
故选D.
【点睛】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.
6、B
【解析】
根据相似三角形的判定方法一一判断即可.
【详解】
解:因为中有一个角是135°,选项中,有135°角的三角形只有B,且满足两边成比例夹角相等,
故选:B.
【点睛】
本题考查相似三角形的性质,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.
7、A
【解析】
解:∵四边形AOBC是矩形,∠ABO=10°,点B的坐标为(0,),∴AC=OB=,∠CAB=10°,∴BC=AC•tan10°=×=1.∵将△ABC沿AB所在直线对折后,点C落在点D处,∴∠BAD=10°,AD=.过点D作DM⊥x轴于点M,∵∠CAB=∠BAD=10°,∴∠DAM=10°,∴DM=AD=,∴AM=×cos10°=,∴MO=﹣1=,∴点D的坐标为(,).故选A.
8、B
【解析】
试题解析:∵AB∥CD,且
∴在中,
故选B.
9、A
【解析】
利用锐角三角函数关系即可求出小刚上升了的高度.
【详解】
在Rt△AOB中,∠AOB=90°,AB=300米,
BO=AB•sinα=300sinα米.
故选A.
【点睛】
此题主要考查了解直角三角形的应用,根据题意构造直角三角形,正确选择锐角三角函数得出AB,BO的关系是解题关键.
10、A
【解析】
延长A1A、B1B和C1C,从而得到P点位置,从而可得到P点坐标.
【详解】
如图,点P的坐标为(-4,-3).
故选A.
【点睛】
本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.
二、填空题(共7小题,每小题3分,满分21分)
11、1
【解析】
在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设袋中有x个红球,列出方程=20%, 求得x=1.
故答案为1.
点睛:此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.
12、
【解析】
分析:按单项式乘以多项式的法则将括号去掉,在合并同类项即可.
详解:
原式=.
故答案为:.
点睛:熟记整式乘法和加减法的相关运算法则是正确解答这类题的关键.
13、
【解析】
∵在Rt△ABC中,BC=6,sinA=
∴AB=10
∴.
∵D是AB的中点,∴AD=AB=1.
∵∠C=∠EDA=90°,∠A=∠A
∴△ADE∽△ACB,
∴
即
解得:DE=.
14、
【解析】
利用特殊三角形的三边关系,求出AM,AE长,求比值.
【详解】
解:如图所示,设BC=x,
∵在Rt△ABC中,∠B=90°,∠A=30°,
∴AC=2BC=2x,AB=BC=x,
根据题意得:AD=BC=x,AE=DE=AB=x,
如图,作EM⊥AD于M,则AM=AD=x,
在Rt△AEM中,cos∠EAD=,
故答案为:.
【点睛】
特殊三角形: 30°-60°-90°特殊三角形,三边比例是1::2,利用特殊三角函数值或者勾股定理可快速求出边的实际关系.
15、(4,2).
【解析】
利用图象旋转和平移可以得到结果.
【详解】
解:∵△CDO绕点C逆时针旋转90°,得到△CBD′,
则BD′=OD=2,
∴点D坐标为(4,6);
当将点C与点O重合时,点C向下平移4个单位,得到△OAD′′,
∴点D向下平移4个单位.故点D′′坐标为(4,2),
故答案为(4,2).
【点睛】
平移和旋转:平移是指在同一平面内,将一个图形整体按照某个直线方向移动一定的距离,这样的图形运动叫做图形的平移运动,简称平移.
定义在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转.这个定点叫做旋转中心,转动的角度叫做旋转角.
16、1
【解析】
分析:要求DN+MN的最小值,DN,MN不能直接求,可考虑通过作辅助线转化DN,MN的值,从而找出其最小值求解.
解答:
解:如图,连接BM,
∵点B和点D关于直线AC对称,∴NB=ND,则BM就是DN+MN的最小值,∵正方形ABCD的边长是8,DM=2,∴CM=6,∴BM==1,∴DN+MN的最小值是1.
故答案为1.
点评:考查正方形的性质和轴对称及勾股定理等知识的综合应用.
17、a<2且a≠1
【解析】
将a看做已知数,表示出分式方程的解,根据解为非负数列出关于a的不等式,求出不等式的解集即可得到a的范围.
【详解】
分式方程去分母得:x+a-2a=2(x-1),
解得:x=2-a,
∵分式方程的解为正实数,
∴2-a>0,且2-a≠1,
解得:a<2且a≠1.
故答案为:a<2且a≠1.
【点睛】
分式方程的解.
三、解答题(共7小题,满分69分)
18、 (1)见解析(2)300(3)2小时
【解析】
解:(1)设甲组加工的零件数量y与时间x的函数关系式为.
根据题意,得,解得.
所以,甲组加工的零件数量y与时间x的函数关系式为:.
(2)当时,.
因为更换设备后,乙组工作效率是原来的2倍,
所以,.解得.
(3)乙组更换设备后,乙组加工的零件的个数y与时间x的函数关系式为
.
当0≤x≤2时,.解得.舍去.
当2
相关试卷
这是一份2021-2022学年宁德市重点中学中考数学押题卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,下列各式中,计算正确的是,下列运算正确的是等内容,欢迎下载使用。
这是一份2021-2022学年临汾市重点中学中考押题数学预测卷含解析,共16页。试卷主要包含了下列运算结果正确的是等内容,欢迎下载使用。
这是一份2021-2022学年金华市重点中学中考押题数学预测卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,下列各式计算正确的是等内容,欢迎下载使用。