年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022届福建省福州市延安中学中考四模数学试题含解析

    2022届福建省福州市延安中学中考四模数学试题含解析第1页
    2022届福建省福州市延安中学中考四模数学试题含解析第2页
    2022届福建省福州市延安中学中考四模数学试题含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届福建省福州市延安中学中考四模数学试题含解析

    展开

    这是一份2022届福建省福州市延安中学中考四模数学试题含解析,共21页。试卷主要包含了下列等式正确的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.二次函数的图象如图所示,则反比例函数与一次函数在同一坐标系中的大致图象是( )

    A. B. C. D.
    2.如图,已知两个全等的直角三角形纸片的直角边分别为、,将这两个三角形的一组等边重合,拼合成一个无重叠的几何图形,其中轴对称图形有( )

    A.3个; B.4个; C.5个; D.6个.
    3.下列说法正确的是(  )
    A.掷一枚均匀的骰子,骰子停止转动后,5点朝上是必然事件
    B.明天下雪的概率为,表示明天有半天都在下雪
    C.甲、乙两人在相同条件下各射击10次,他们成绩的平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定
    D.了解一批充电宝的使用寿命,适合用普查的方式
    4.如图,在⊙O中,O为圆心,点A,B,C在圆上,若OA=AB,则∠ACB=(  )

    A.15° B.30° C.45° D.60°
    5.下列等式正确的是(  )
    A.x3﹣x2=x B.a3÷a3=a
    C. D.(﹣7)4÷(﹣7)2=﹣72
    6.如图,已知四边形ABCD,R,P分别是DC,BC上的点,E,F分别是AP,RP的中点,当点P在BC上从点B向点C移动而点R不动时, 那么下列结论成立的是( ).

    A.线段EF的长逐渐增大 B.线段EF的长逐渐减少
    C.线段EF的长不变 D.线段EF的长不能确定
    7.已知两点都在反比例函数图象上,当时, ,则的取值范围是( )
    A. B. C. D.
    8.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A,B在围成的正方体中的距离是(  )

    A.0 B.1 C. D.
    9.如图,在⊙O中,弦AB=CD,AB⊥CD于点E,已知CE•ED=3,BE=1,则⊙O的直径是(  )

    A.2 B. C.2 D.5
    10.若关于,的二元一次方程组的解也是二元一次方程的解,则的值为  
    A. B. C. D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.当关于x的一元二次方程ax2+bx+c=0有实数根,且其中一个根为另一个根的2倍时,称之为“倍根方程”.如果关于x的一元二次方程x2+(m﹣2)x﹣2m=0是“倍根方程”,那么m的值为_____.
    12.为响应“书香成都”建设的号召,在全校形成良好的人文阅读风尚,成都市某中学随机调查了部分学生平均每天的阅读时间,统计结果如图所示,则在本次调查中,阅读时间的中位数是________小时.

    13.已知线段a=4,线段b=9,则a,b的比例中项是_____.
    14.二次函数的图象与x轴有____个交点 .
    15.方程=1的解是_____.
    16.如图,在平面直角坐标系中,Rt△ABO的顶点O与原点重合,顶点B在x轴上,∠ABO=90°,OA与反比例函数y=的图象交于点D,且OD=2AD,过点D作x轴的垂线交x轴于点C.若S四边形ABCD=10,则k的值为   .

    17.如图,直线与双曲线(k≠0)相交于A(﹣1,)、B两点,在y轴上找一点P,当PA+PB的值最小时,点P的坐标为_________.

    三、解答题(共7小题,满分69分)
    18.(10分)如图,在△ABC中,∠ABC=90°,D,E分别为AB,AC的中点,延长DE到点F,使EF=2DE.
    (1)求证:四边形BCFE是平行四边形;
    (2)当∠ACB=60°时,求证:四边形BCFE是菱形.

    19.(5分)已知a2+2a=9,求的值.
    20.(8分)计算:(π﹣3.14)0﹣2﹣|﹣3|.
    21.(10分)如图所示,一幢楼房AB背后有一台阶CD,台阶每层高0.2米,且AC=17.2米,设太阳光线与水平地面的夹角为α,当α=60°时,测得楼房在地面上的影长AE=10米,现有一老人坐在MN这层台阶上晒太阳.(取1.73)
    (1)求楼房的高度约为多少米?
    (2)过了一会儿,当α=45°时,问老人能否还晒到太阳?请说明理由.

    22.(10分)如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过点D作DE⊥AC,垂足为E.

    (1)证明:DE为⊙O的切线;
    (2)连接DC,若BC=4,求弧DC与弦DC所围成的图形的面积.
    23.(12分)已知,抛物线y=ax2+c过点(-2,2)和点(4,5),点F(0,2)是y 轴上的定点,点B是抛物线上除顶点外的任意一点,直线l:y=kx+b经过点B、F且交x轴于点A.

    (1)求抛物线的解析式;
    (2)①如图1,过点B作BC⊥x轴于点C,连接FC,求证:FC平分∠BFO;
    ②当k= 时,点F是线段AB的中点;
    (3)如图2, M(3,6)是抛物线内部一点,在抛物线上是否存在点B,使△MBF的周长最小?若存在,求出这个最小值及直线l的解析式;若不存在,请说明理由.
    24.(14分)如图,已知正方形ABCD的边长为4,点P是AB边上的一个动点,连接CP,过点P作PC的垂线交AD于点E,以 PE为边作正方形PEFG,顶点G在线段PC上,对角线EG、PF相交于点O.
    (1)若AP=1,则AE= ;
    (2)①求证:点O一定在△APE的外接圆上;
    ②当点P从点A运动到点B时,点O也随之运动,求点O经过的路径长;
    (3)在点P从点A到点B的运动过程中,△APE的外接圆的圆心也随之运动,求该圆心到AB边的距离的最大值.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    根据抛物线和直线的关系分析.
    【详解】
    由抛物线图像可知,所以反比例函数应在二、四象限,一次函数过原点,应在二、四象限.
    故选D
    【点睛】
    考核知识点:反比例函数图象.
    2、B
    【解析】
    分析:直接利用轴对称图形的性质进而分析得出答案.
    详解:如图所示:将这两个三角形的一组等边重合,拼合成一个无重叠的几何图形,其中轴对称图形有4个.

    故选B.
    点睛:本题主要考查了全等三角形的性质和轴对称图形,正确把握轴对称图形的性质是解题的关键.
    3、C
    【解析】
    根据必然事件、不可能事件、随机事件的概念、方差和普查的概念判断即可.
    【详解】
    A. 掷一枚均匀的骰子,骰子停止转动后,5点朝上是随机事件,错误;
    B. “明天下雪的概率为”,表示明天有可能下雪,错误;
    C. 甲、乙两人在相同条件下各射击10次,他们成绩的平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,正确;
    D. 了解一批充电宝的使用寿命,适合用抽查的方式,错误;
    故选:C
    【点睛】
    考查方差, 全面调查与抽样调查, 随机事件, 概率的意义,比较基础,难度不大.
    4、B
    【解析】
    根据题意得到△AOB是等边三角形,求出∠AOB的度数,根据圆周角定理计算即可.
    【详解】
    解:∵OA=AB,OA=OB,
    ∴△AOB是等边三角形,
    ∴∠AOB=60°,
    ∴∠ACB=30°,
    故选B.
    【点睛】
    本题考查的是圆周角定理和等边三角形的判定,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.
    5、C
    【解析】
    直接利用同底数幂的乘除运算法则以及有理数的乘方运算法则分别计算得出答案.
    【详解】
    解:A、x3-x2,无法计算,故此选项错误;
    B、a3÷a3=1,故此选项错误;
    C、(-2)2÷(-2)3=-,正确;
    D、(-7)4÷(-7)2=72,故此选项错误;
    故选C.
    【点睛】
    此题主要考查了同底数幂的乘除运算以及有理数的乘方运算,正确掌握相关运算法则是解题关键.
    6、C
    【解析】
    因为R不动,所以AR不变.根据三角形中位线定理可得EF= AR,因此线段EF的长不变.
    【详解】
    如图,连接AR,

    ∵E、F分别是AP、RP的中点,
    ∴EF为△APR的中位线,
    ∴EF= AR,为定值.
    ∴线段EF的长不改变.
    故选:C.
    【点睛】
    本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.
    7、B
    【解析】
    根据反比例函数的性质判断即可.
    【详解】
    解:∵当x1<x2<0时,y1<y2,
    ∴在每个象限y随x的增大而增大,
    ∴k<0,
    故选:B.
    【点睛】
    本题考查了反比例函数的性质,解题的关键是熟练掌握反比例函数的性质.
    8、C
    【解析】
    试题分析: 本题考查了勾股定理、展开图折叠成几何体、正方形的性质;熟练掌握正方形的性质和勾股定理,并能进行推理计算是解决问题的关键.由正方形的性质和勾股定理求出AB的长,即可得出结果.
    解:连接AB,如图所示:
    根据题意得:∠ACB=90°,
    由勾股定理得:AB==;
    故选C.

    考点:1.勾股定理;2.展开图折叠成几何体.
    9、C
    【解析】
    作OH⊥AB于H,OG⊥CD于G,连接OA,根据相交弦定理求出EA,根据题意求出CD,根据垂径定理、勾股定理计算即可.
    【详解】
    解:作OH⊥AB于H,OG⊥CD于G,连接OA,
    由相交弦定理得,CE•ED=EA•BE,即EA×1=3,
    解得,AE=3,
    ∴AB=4,
    ∵OH⊥AB,
    ∴AH=HB=2,
    ∵AB=CD,CE•ED=3,
    ∴CD=4,
    ∵OG⊥CD,
    ∴EG=1,
    由题意得,四边形HEGO是矩形,
    ∴OH=EG=1,
    由勾股定理得,OA=,
    ∴⊙O的直径为,
    故选C.

    【点睛】
    此题考查了相交弦定理、垂径定理、勾股定理、矩形的判定与性质;根据图形作出相应的辅助线是解本题的关键.
    10、B
    【解析】
    将k看做已知数求出用k表示的x与y,代入2x+3y=6中计算即可得到k的值.
    【详解】
    解:,
    ①②得:,即,
    将代入①得:,即,
    将,代入得:,
    解得:.
    故选:.
    【点睛】
    此题考查了二元一次方程组的解,以及二元一次方程的解,方程的解即为能使方程左右两边成立的未知数的值.

    二、填空题(共7小题,每小题3分,满分21分)
    11、-1或-4
    【解析】
    分析:
    设“倍根方程”的一个根为,则另一根为,由一元二次方程根与系数的关系可得,由此可列出关于m的方程,解方程即可求得m的值.
    详解:
    由题意设“倍根方程”的一个根为,另一根为,则由一元二次方程根与系数的关系可得:

    ∴,
    ∴,
    化简整理得:,解得 .
    故答案为:-1或-4.
    点睛:本题解题的关键是熟悉一元二次方程根与系数的关系:若一元二次方程的两根分别为,则.
    12、1
    【解析】
    由统计图可知共有:8+19+10+3=40人,中位数应为第20与第21个的平均数,
    而第20个数和第21个数都是1(小时),则中位数是1小时.
    故答案为1.
    13、6
    【解析】
    根据已知线段a=4,b=9,设线段x是a,b的比例中项,列出等式,利用两内项之积等于两外项之积即可得出答案.
    【详解】
    解:∵a=4,b=9,设线段x是a,b的比例中项,
    ∴ ,
    ∴x2=ab=4×9=36,
    ∴x=6,x=﹣6(舍去).
    故答案为6
    【点睛】
    本题主要考查比例线段问题,解题关键是利用两内项之积等于两外项之积解答.
    14、2
    【解析】
    【分析】根据一元二次方程x2+mx+m-2=0的根的判别式的符号进行判定二次函数y=x2+mx+m-2的图象与x轴交点的个数.
    【详解】二次函数y=x2+mx+m-2的图象与x轴交点的纵坐标是零,
    即当y=0时,x2+mx+m-2=0,
    ∵△=m2-4(m-2)=(m-2)2+4>0,
    ∴一元二次方程x2+mx+m-2=0有两个不相等是实数根,
    即二次函数y=x2+mx+m-2的图象与x轴有2个交点,
    故答案为:2.
    【点睛】本题考查了抛物线与x轴的交点.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系.
    △=b2-4ac决定抛物线与x轴的交点个数.
    △=b2-4ac>0时,抛物线与x轴有2个交点;
    △=b2-4ac=0时,抛物线与x轴有1个交点;
    △=b2-4ac<0时,抛物线与x轴没有交点.
    15、x=3
    【解析】
    去分母得:x﹣1=2,
    解得:x=3,
    经检验x=3是分式方程的解,
    故答案为3.
    【点睛】本题主要考查解分式方程,解分式方程的思路是将分式方程化为整式方程,然后求解.去分母后解出的结果须代入最简公分母进行检验,结果为零,则原方程无解;结果不为零,则为原方程的解.
    16、﹣1
    【解析】
    ∵OD=2AD,
    ∴,
    ∵∠ABO=90°,DC⊥OB,
    ∴AB∥DC,
    ∴△DCO∽△ABO,
    ∴,
    ∴,
    ∵S四边形ABCD=10,
    ∴S△ODC=8,
    ∴OC×CD=8,
    OC×CD=1,
    ∴k=﹣1,
    故答案为﹣1.
    17、(0,).
    【解析】
    试题分析:把点A坐标代入y=x+4得a=3,即A(﹣1,3),把点A坐标代入双曲线的解析式得3=﹣k,即k=﹣3,联立两函数解析式得:,解得:,,即点B坐标为:(﹣3,1),作出点A关于y轴的对称点C,连接BC,与y轴的交点即为点P,使得PA+PB的值最小,则点C坐标为:(1,3),设直线BC的解析式为:y=ax+b,把B、C的坐标代入得:,解得:,所以函数解析式为:y=x+,则与y轴的交点为:(0,).
    考点:反比例函数与一次函数的交点问题;轴对称-最短路线问题.

    三、解答题(共7小题,满分69分)
    18、(1)见解析;(2)见解析
    【解析】
    (1)由题意易得,EF与BC平行且相等,利用四边形BCFE是平行四边形.
    (2)根据菱形的判定证明即可.
    【详解】
    (1)证明::∵D.E为AB,AC中点
    ∴DE为△ABC的中位线,DE=BC,
    ∴DE∥BC,
    即EF∥BC,
    ∵EF=BC,
    ∴四边形BCEF为平行四边形.
    (2)∵四边形BCEF为平行四边形,
    ∵∠ACB=60°,
    ∴BC=CE=BE,
    ∴四边形BCFE是菱形.

    【点睛】
    本题考查平行四边形的判定和性质、菱形的判定、等边三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    19、,.
    【解析】
    试题分析:原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,把已知等式变形后代入计算即可求出值.
    试题解析:
    = = =,
    ∵a2+2a=9,
    ∴(a+1)2=1.
    ∴原式=.
    20、﹣1.
    【解析】
    本题涉及零指数幂、负指数幂、二次根式化简和特殊角的三角函数值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.
    【详解】
    原式
    =1﹣3+4﹣3,
    =﹣1.
    【点睛】
    本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.
    21、(1)楼房的高度约为17.3米;(2)当α=45°时,老人仍可以晒到太阳.理由见解析.
    【解析】
    试题分析:(1)在Rt△ABE中,根据的正切值即可求得楼高;(2)当时,从点B射下的光线与地面AD的交点为F,与MC的交点为点H.可求得AF=AB=17.3米,又因CF=CH=17.3-17.2=0.1米,CM=0.2,所以大楼的影子落在台阶MC这个侧面上.即小猫仍可晒到太阳.
    试题解析:解:(1)当当时,在Rt△ABE中,
    ∵,
    ∴BA=10tan60°=米.
    即楼房的高度约为17.3米.

    当时,小猫仍可晒到太阳.理由如下:
    假设没有台阶,当时,从点B射下的光线与地面AD的交点为F,与MC的交点为点H.
    ∵∠BFA=45°,
    ∴,此时的影长AF=BA=17.3米,
    所以CF=AF-AC=17.3-17.2=0.1.
    ∴CH=CF=0.1米,
    ∴大楼的影子落在台阶MC这个侧面上.
    ∴小猫仍可晒到太阳.
    考点:解直角三角形.
    22、(1)详见解析;(2).
    【解析】
    (1)连接OD,由平行线的判定定理可得OD∥AC,利用平行线的性质得∠ODE=∠DEA=90°,可得DE为⊙O的切线;
    (2)连接CD,求弧DC与弦DC所围成的图形的面积利用扇形DOC面积-三角形DOC的面积计算即可.
    【详解】
    解:
    (1)证明:连接OD,
    ∵OD=OB,
    ∴∠ODB=∠B,
    ∵AC=BC,
    ∴∠A=∠B,
    ∴∠ODB=∠A,
    ∴OD∥AC,
    ∴∠ODE=∠DEA=90°,
    ∴DE为⊙O的切线;
    (2)连接CD,
    ∵∠A=30°,AC=BC,
    ∴∠BCA=120°,
    ∵BC为直径,
    ∴∠ADC=90°,
    ∴CD⊥AB,
    ∴∠BCD=60°,
    ∵OD=OC,
    ∴∠DOC=60°,
    ∴△DOC是等边三角形,
    ∵BC=4,
    ∴OC=DC=2,
    ∴S△DOC=DC×=,
    ∴弧DC与弦DC所围成的图形的面积=﹣=﹣.

    【点睛】
    本题考查的知识点是等腰三角形的性质、切线的判定与性质以及扇形面积的计算,解题的关键是熟练的掌握等腰三角形的性质、切线的判定与性质以及扇形面积的计算.
    23、(1);(2)①见解析;②;(3)存在点B,使△MBF的周长最小.△MBF周长的最小值为11,直线l的解析式为.
    【解析】
    (1)用待定系数法将已知两点的坐标代入抛物线解析式即可解答.
    (2)①由于BC∥y轴,容易看出∠OFC=∠BCF,想证明∠BFC=∠OFC,可转化为求证∠BFC=∠BCF,根据“等边对等角”,也就是求证BC=BF,可作BD⊥y轴于点D,设B(m,),通过勾股定理用表示出的长度,与相等,即可证明.
    ②用表示出点的坐标,运用勾股定理表示出的长度,令,解关于的一元二次方程即可.
    (3)求折线或者三角形周长的最小值问题往往需要将某些线段代换转化到一条直线上,再通过“两点之间线段最短”或者“垂线段最短”等定理寻找最值.本题可过点M作MN⊥x轴于点N,交抛物线于点B1,过点B作BE⊥x轴于点E,连接B1F,通过第(2)问的结论
    将△MBF的边转化为,可以发现,当点运动到位置时,△MBF周长取得最小值,根据求平面直角坐标系里任意两点之间的距离的方法代入点与的坐标求出的长度,再加上即是△MBF周长的最小值;将点的横坐标代入二次函数求出,再联立与的坐标求出的解析式即可.
    【详解】
    (1)解:将点(-2,2)和(4,5)分别代入,得:

    解得:
    ∴抛物线的解析式为:.
    (2)①证明:过点B作BD⊥y轴于点D,
    设B(m,),
    ∵BC⊥x轴,BD⊥y轴,F(0,2)
    ∴BC=,
    BD=|m|,DF=

    ∴BC=BF
    ∴∠BFC=∠BCF

    又BC∥y轴,∴∠OFC=∠BCF
    ∴∠BFC=∠OFC
    ∴FC平分∠BFO .

    (说明:写一个给1分)
    (3)存在点B,使△MBF的周长最小.
    过点M作MN⊥x轴于点N,交抛物线于点B1,过点B作BE⊥x轴于点E,连接B1F
    由(2)知B1F=B1N,BF=BE
    ∴△MB1F的周长=MF+MB1+B1F=MF+MB1+B1N=MF+MN
    △MBF的周长=MF+MB+BF=MF+MB+BE
    根据垂线段最短可知:MN<MB+BE
    ∴当点B在点B1处时,△MBF的周长最小
    ∵M(3,6),F(0,2)
    ∴,MN=6
    ∴△MBF周长的最小值=MF+MN=5+6=11
    将x=3代入,得:
    ∴B1(3,)
    将F(0,2)和B1(3,)代入y=kx+b,得:


    解得:
    ∴此时直线l的解析式为:.
    【点睛】
    本题综合考查了二次函数与一次函数的图象与性质,等腰三角形的性质,动点与最值问题等,熟练掌握各个知识点,结合图象作出合理辅助线,进行适当的转化是解答关键.
    24、(1);(2)①证明见解析;②;(3).
    【解析】
    试题分析:(1)由正方形的性质得出∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,由角的互余关系证出∠AEP=∠PBC,得出△APE∽△BCP,得出对应边成比例即可求出AE的长;
    (2)①A、P、O、E四点共圆,即可得出结论;
    ②连接OA、AC,由勾股定理求出AC=,由圆周角定理得出∠OAP=∠OEP=45°,周长点O在AC上,当P运动到点B时,O为AC的中点,即可得出答案;
    (3)设△APE的外接圆的圆心为M,作MN⊥AB于N,由三角形中位线定理得出MN=AE,设AP=x,则BP=4﹣x,由相似三角形的对应边成比例求出AE的表达式,由二次函数的最大值求出AE的最大值为1,得出MN的最大值=即可.
    试题解析:(1)∵四边形ABCD、四边形PEFG是正方形,
    ∴∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,
    ∴∠AEP+∠APE=90°,∠BPC+∠APE=90°,
    ∴∠AEP=∠PBC,∴△APE∽△BCP,
    ∴,即,解得:AE=,
    故答案为:;
    (2)①∵PF⊥EG,∴∠EOF=90°,
    ∴∠EOF+∠A=180°,∴A、P、O、E四点共圆,
    ∴点O一定在△APE的外接圆上;
    ②连接OA、AC,如图1所示:
    ∵四边形ABCD是正方形,∴∠B=90°,∠BAC=45°,∴AC==,
    ∵A、P、O、E四点共圆,∴∠OAP=∠OEP=45°,
    ∴点O在AC上,当P运动到点B时,O为AC的中点,OA=AC=,
    即点O经过的路径长为;
    (3)设△APE的外接圆的圆心为M,作MN⊥AB于N,如图2所示:
    则MN∥AE,∵ME=MP,∴AN=PN,∴MN=AE,
    设AP=x,则BP=4﹣x,由(1)得:△APE∽△BCP,
    ∴,即,解得:AE= =,
    ∴x=2时,AE的最大值为1,此时MN的值最大=×1=,
    即△APE的圆心到AB边的距离的最大值为.

    【点睛】本题考查圆、二次函数的最值等,正确地添加辅助线,根据已知证明△APE∽△BCP是解题的关键.

    相关试卷

    2023年福建省福州市鼓楼区延安中学中考数学适应性试卷(三)(含解析):

    这是一份2023年福建省福州市鼓楼区延安中学中考数学适应性试卷(三)(含解析),共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年福建省福州市鼓楼区延安中学中考数学二检试卷(含解析):

    这是一份2023年福建省福州市鼓楼区延安中学中考数学二检试卷(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    福建省福州市延安中学2022年中考数学对点突破模拟试卷含解析:

    这是一份福建省福州市延安中学2022年中考数学对点突破模拟试卷含解析,共17页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map