终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022届安徽阜阳鸿升中学中考数学模拟精编试卷含解析

    立即下载
    加入资料篮
    2022届安徽阜阳鸿升中学中考数学模拟精编试卷含解析第1页
    2022届安徽阜阳鸿升中学中考数学模拟精编试卷含解析第2页
    2022届安徽阜阳鸿升中学中考数学模拟精编试卷含解析第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届安徽阜阳鸿升中学中考数学模拟精编试卷含解析

    展开

    这是一份2022届安徽阜阳鸿升中学中考数学模拟精编试卷含解析,共23页。
    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(共10小题,每小题3分,共30分)
    1.四根长度分别为3,4,6,(为正整数)的木棒,从中任取三根.首尾顺次相接都能组成一个三角形,则( ).
    A.组成的三角形中周长最小为9 B.组成的三角形中周长最小为10
    C.组成的三角形中周长最大为19 D.组成的三角形中周长最大为16
    2.郑州地铁Ⅰ号线火车站站口分布如图所示,有A,B,C,D,E五个进出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好选择从同一个口进出的概率是(  )

    A. B. C. D.
    3.将一圆形纸片对折后再对折,得到下图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是(  )

    A. B. C. D.
    4.若,代数式的值是  
    A.0 B. C.2 D.
    5.计算的值( )
    A.1 B. C.3 D.
    6.在Rt△ABC中,∠C=90°,AC=5,AB=13,则sinA的值为(  )
    A. B. C. D.
    7.如图,AB为⊙O的直径,C、D为⊙O上的点,若AC=CD=DB,则cos∠CAD =( )

    A. B. C. D.
    8.吉林市面积约为27100平方公里,将27100这个数用科学记数法表示为(  )
    A.27.1×102 B.2.71×103 C.2.71×104 D.0.271×105
    9.如图,∠AOB=45°,OC是∠AOB的角平分线,PM⊥OB,垂足为点M,PN∥OB,PN与OA相交于点N,那么的值等于(  )

    A. B. C. D.
    10.按如图所示的方法折纸,下面结论正确的个数( )
    ①∠2=90°;②∠1=∠AEC;③△ABE∽△ECF;④∠BAE=∠1.

    A.1 个 B.2 个 C.1 个 D.4 个
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,在平面直角坐标系中,点A和点C分别在y轴和x轴正半轴上,以OA、OC为边作矩形OABC,双曲线(>0)交AB于点E,AE︰EB=1︰3.则矩形OABC的面积是 __________.

    12.如图,点P是边长为2的正方形ABCD的对角线BD上的动点,过点P分别作PE⊥BC于点E,PF⊥DC于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EF交AH于点G,当点P在BD上运动时(不包括B、D两点),以下结论:①MF=MC;②AH⊥EF;③AP2=PM•PH; ④EF的最小值是.其中正确的是________.(把你认为正确结论的序号都填上)

    13.在函数y=的表达式中,自变量x的取值范围是 .
    14.如图,在矩形ABCD中,E是AD上一点,把△ABE沿直线BE翻折,点A正好落在BC边上的点F处,如果四边形CDEF和矩形ABCD相似,那么四边形CDEF和矩形ABCD面积比是__.

    15.一个多边形,除了一个内角外,其余各角的和为2750°,则这一内角为_____度.
    16.如图所示,摆第一个“小屋子”要5枚棋子,摆第二个要11枚棋子,摆第三个要17枚棋子,则摆第30个“小屋子”要___枚棋子.

    三、解答题(共8题,共72分)
    17.(8分)在△ABC中,AB=AC,以AB为直径的⊙O交AC于点E,交BC于点D,P为AC延长线上一点,且∠PBC=∠BAC,连接DE,BE.
    (1)求证:BP是⊙O的切线;
    (2)若sin∠PBC=,AB=10,求BP的长.

    18.(8分)已知直线y=mx+n(m≠0,且m,n为常数)与双曲线y=(k<0)在第一象限交于A,B两点,C,D是该双曲线另一支上两点,且A、B、C、D四点按顺时针顺序排列.
    (1)如图,若m=﹣,n=,点B的纵坐标为,
    ①求k的值;
    ②作线段CD,使CD∥AB且CD=AB,并简述作法;
    (2)若四边形ABCD为矩形,A的坐标为(1,5),
    ①求m,n的值;
    ②点P(a,b)是双曲线y=第一象限上一动点,当S△APC≥24时,则a的取值范围是   .

    19.(8分)在平面直角坐标系中,△ABC的顶点坐标是A(﹣2,3),B(﹣4,﹣1), C(2,0).点P(m,n)为△ABC内一点,平移△ABC得到△A1B1C1 ,使点P(m,n)移到P(m+6,n+1)处.
    (1)画出△A1B1C1
    (2)将△ABC绕坐标点C逆时针旋转90°得到△A2B2C,画出△A2B2C;
    (3)在(2)的条件下求BC扫过的面积.

    20.(8分)如图,在△ABC 中,AB=AC,CD是∠ACB的平分线,DE∥BC,交AC于点 E.求证:DE=CE. 若∠CDE=35°,求∠A 的度数.

    21.(8分)从化市某中学初三(1)班数学兴趣小组为了解全校800名初三学生的“初中毕业选择升学和就业”情况,特对本班50名同学们进行调查,根据全班同学提出的3个主要观点:A高中,B中技,C就业,进行了调查(要求每位同学只选自己最认可的一项观点);并制成了扇形统计图(如图).请回答以下问题:
    (1)该班学生选择   观点的人数最多,共有   人,在扇形统计图中,该观点所在扇形区域的圆心角是   度.
    (2)利用样本估计该校初三学生选择“中技”观点的人数.
    (3)已知该班只有2位女同学选择“就业”观点,如果班主任从该观点中,随机选取2位同学进行调查,那么恰好选到这2位女同学的概率是多少?(用树形图或列表法分析解答).

    22.(10分)如图,AB是⊙O的直径,点C是AB延长线上的点,CD与⊙O相切于点D,连结BD、AD.求证;∠BDC=∠A.若∠C=45°,⊙O的半径为1,直接写出AC的长.

    23.(12分)已知:如图,∠ABC=∠DCB,BD、CA分别是∠ABC、∠DCB 的平分线.
    求证:AB=DC.

    24.如图,点G是正方形ABCD对角线CA的延长线一点,对角线BD与AC交于点O,以线段AG为边作一个正方形AEFG,连接EB、GD.
    (1)求证:EB=GD;
    (2)若AB=5,AG=2,求EB的长.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    首先写出所有的组合情况,再进一步根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.
    【详解】
    解:其中的任意三根的组合有3、4、1;3、4、x;3、1、x;4、1、x共四种情况,
    由题意:从中任取三根,首尾顺次相接都能组成一个三角形,可得3<x<7,即x=4或5或1.
    ①当三边为3、4、1时,其周长为3+4+1=13;
    ②当x=4时,周长最小为3+4+4=11,周长最大为4+1+4=14;
    ③当x=5时,周长最小为3+4+5=12,周长最大为4+1+5=15;
    ④若x=1时,周长最小为3+4+1=13,周长最大为4+1+1=11;
    综上所述,三角形周长最小为11,最大为11,
    故选:D.
    【点睛】
    本题考查的是三角形三边关系,利用了分类讨论的思想.掌握三角形任意两边之和大于第三边,任意两边之差小于第三边是解答本题的关键.
    2、C
    【解析】
    列表得出进出的所有情况,再从中确定出恰好选择从同一个口进出的结果数,继而根据概率公式计算可得.
    【详解】
    解:列表得:

    A
    B
    C
    D
    E
    A
    AA
    BA
    CA
    DA
    EA
    B
    AB
    BB
    CB
    DB
    EB
    C
    AC
    BC
    CC
    DC
    EC
    D
    AD
    BD
    CD
    DD
    ED
    E
    AE
    BE
    CE
    DE
    EE
    ∴一共有25种等可能的情况,恰好选择从同一个口进出的有5种情况,
    ∴恰好选择从同一个口进出的概率为=,
    故选C.
    【点睛】
    此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
    3、C
    【解析】
    严格按照图中的方法亲自动手操作一下,即可很直观地呈现出来.
    【详解】
    根据题意知,剪去的纸片一定是一个四边形,且对角线互相垂直.
    故选C.
    【点睛】
    本题主要考查学生的动手能力及空间想象能力.对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.
    4、D
    【解析】
    由可得,整体代入到原式即可得出答案.
    【详解】
    解:,

    则原式.
    故选:D.
    【点睛】
    本题主要考查整式的化简求值,熟练掌握整式的混合运算顺序和法则及代数式的求值是解题的关键.
    5、A
    【解析】
    根据有理数的加法法则进行计算即可.
    【详解】

    故选:A.
    【点睛】
    本题主要考查有理数的加法,掌握有理数的加法法则是解题的关键.
    6、C
    【解析】
    先根据勾股定理求出BC得长,再根据锐角三角函数正弦的定义解答即可.
    【详解】
    如图,根据勾股定理得,BC==12,
    ∴sinA=.
    故选C.

    【点睛】
    本题考查了锐角三角函数的定义及勾股定理,熟知锐角三角函数正弦的定义是解决问题的关键.
    7、D
    【解析】
    根据圆心角,弧,弦的关系定理可以得出===,根据圆心角和圆周角的关键即可求出的度数,进而求出它的余弦值.
    【详解】
    解:
    ===,


    故选D.
    【点睛】
    本题考查圆心角,弧,弦,圆周角的关系,熟记特殊角的三角函数值是解题的关键.
    8、C
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    将27100用科学记数法表示为:. 2.71×104.
    故选:C.
    【点睛】
    本题考查科学记数法—表示较大的数。
    9、B
    【解析】
    过点P作PE⊥OA于点E,根据角平分线上的点到角的两边的距离相等可得PE=PM,再根据两直线平行,内错角相等可得∠POM=∠OPN,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠PNE=∠AOB,再根据直角三角形解答.
    【详解】
    如图,过点P作PE⊥OA于点E,

    ∵OP是∠AOB的平分线,
    ∴PE=PM,
    ∵PN∥OB,
    ∴∠POM=∠OPN,
    ∴∠PNE=∠PON+∠OPN=∠PON+∠POM=∠AOB=45°,
    ∴=.
    故选:B.
    【点睛】
    本题考查了角平分线上的点到角的两边距离相等的性质,直角三角形的性质,以及三角形的一个外角等于与它不相邻的两个内角的和,作辅助线构造直角三角形是解题的关键.
    10、C
    【解析】
    ∵∠1+∠1=∠2,∠1+∠1+∠2=180°,
    ∴∠1+∠1=∠2=90°,故①正确;
    ∵∠1+∠1=∠2,∴∠1≠∠AEC.故②不正确;
    ∵∠1+∠1=90°,∠1+∠BAE=90°,
    ∴∠1=∠BAE,
    又∵∠B=∠C,
    ∴△ABE∽△ECF.故③,④正确;
    故选C.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、1
    【解析】
    根据反比例函数图象上点的坐标特征设E点坐标为(t,),则利用AE:EB=1:3,B点坐标可表示为(4t,),然后根据矩形面积公式计算.
    【详解】
    设E点坐标为(t,),
    ∵AE:EB=1:3,
    ∴B点坐标为(4t,),
    ∴矩形OABC的面积=4t•=1.
    故答案是:1.
    【点睛】
    考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.
    12、②③④
    【解析】
    ①可用特殊值法证明,当为的中点时,,可见.
    ②可连接,交于点,先根据证明,得到,根据矩形的性质可得,故,又因为,故,故.
    ③先证明,得到,再根据,得到,代换可得.
    ④根据,可知当取最小值时,也取最小值,根据点到直线的距离也就是垂线段最短可得,当时,取最小值,再通过计算可得.
    【详解】
    解:
    ①错误.当为的中点时,,可见;
    ②正确.
    如图,连接,交于点,




    ,,,
    四边形为矩形,






    .
    ③正确.





    又,




    .
    ④正确.
    且四边形为矩形,

    当时,取最小值,
    此时,
    故的最小值为.
    故答案为:②③④.
    【点睛】
    本题是动点问题,综合考查了矩形、正方形的性质,全等三角形与相似三角形的性质与判定,线段的最值问题等,合理作出辅助线,熟练掌握各个相关知识点是解答关键.
    13、x≥1.
    【解析】
    根据被开方数大于等于0列式计算即可得解.
    【详解】
    根据题意得,x﹣1≥0,
    解得x≥1.
    故答案为x≥1.
    【点睛】
    本题考查函数自变量的取值范围,知识点为:二次根式的被开方数是非负数.
    14、
    【解析】
    由题意易得四边形ABFE是正方形,
    设AB=1,CF=x,则有BC=x+1,CD=1,
    ∵四边形CDEF和矩形ABCD相似,
    ∴CD:BC=FC:CD,
    即1:(x+1)=x:1,
    ∴x=或x=(舍去),
    ∴ =,
    故答案为.

    【点睛】本题考查了折叠的性质,相似多边形的性质等,熟练掌握相似多边形的面积比等于相似比的平方是解题的关键.
    15、130
    【解析】
    分析:n边形的内角和是 因而内角和一定是180度的倍数.而多边形的内角一定大于0,并且小于180度,因而内角和除去一个内角的值,这个值除以180度,所得数值比边数要小,小的值小于1.
    详解:设多边形的边数为x,由题意有

    解得
    因而多边形的边数是18,
    则这一内角为
    故答案为
    点睛:考查多边形的内角和公式,熟记多边形的内角和公式是解题的关键.
    16、1.
    【解析】
    根据题意分析可得:第1个图案中棋子的个数5个,第2个图案中棋子的个数5+6=11个,…,每个图形都比前一个图形多用6个,继而可求出第30个“小屋子”需要的棋子数.
    【详解】
    根据题意分析可得:第1个图案中棋子的个数5个.
    第2个图案中棋子的个数5+6=11个.
    ….
    每个图形都比前一个图形多用6个.
    ∴第30个图案中棋子的个数为5+29×6=1个.
    故答案为1.
    【点睛】
    考核知识点:图形的规律.分析出一般数量关系是关键.

    三、解答题(共8题,共72分)
    17、(1)证明见解析;(2)
    【解析】
    (1)连接AD,求出∠PBC=∠ABC,求出∠ABP=90°,根据切线的判定得出即可;
    (2)解直角三角形求出BD,求出BC,根据勾股定理求出AD,根据相似三角形的判定和性质求出BE,根据相似三角形的性质和判定求出BP即可.
    【详解】
    解:(1)连接AD,

    ∵AB是⊙O的直径,
    ∴∠ADB=90°,
    ∴AD⊥BC,
    ∵AB=AC,
    ∴AD平分∠BAC,
    ∴∠BAD=∠BAC,
    ∵∠ADB=90°,
    ∴∠BAD+∠ABD=90°,
    ∵∠PBC=∠BAC,
    ∴∠PBC+∠ABD=90°,
    ∴∠ABP=90°,即AB⊥BP,
    ∴PB是⊙O的切线;
    (2)∵∠PBC=∠BAD,
    ∴sin∠PBC=sin∠BAD,
    ∵sin∠PBC==,AB=10,
    ∴BD=2,由勾股定理得:AD==4,
    ∴BC=2BD=4,
    ∵由三角形面积公式得:AD×BC=BE×AC,
    ∴4×4=BE×10,
    ∴BE=8,
    ∴在Rt△ABE中,由勾股定理得:AE=6,
    ∵∠BAE=∠BAP,∠AEB=∠ABP=90°,
    ∴△ABE∽△APB,
    ∴=,
    ∴PB===.
    【点睛】
    本题考查了切线的判定、圆周角定理、勾股定理、解直角三角形、相似三角形的性质和判定等知识点,能综合运用性质定理进行推理是解此题的关键.
    18、(1)①k= 5;②见解析,由此AO交双曲线于点C,延长BO交双曲线于点D,线段CD即为所求;(2)①;②0<a<1或a>5
    【解析】
    (1)①求出直线的解析式,利用待定系数法即可解决问题;②如图,由此AO交双曲线于点C,延长BO交双曲线于点D,线段CD即为所求;
    (2)①求出A,B两点坐标,利用待定系数法即可解决问题;②分两种情形求出△PAC的面积=24时a的值,即可判断.
    【详解】
    (1)①∵,,
    ∴直线的解析式为,
    ∵点B在直线上,纵坐标为,
    ∴,
    解得x=2
    ∴,
    ∴;
    ②如下图,由此AO交双曲线于点C,延长BO交双曲线于点D,线段CD即为所求;

    (2)①∵点在上,
    ∴k=5,
    ∵四边形ABCD是矩形,
    ∴OA=OB=OC=OD,
    ∴A,B关于直线y=x对称,
    ∴,
    则有:,解得;
    ②如下图,当点P在点A的右侧时,作点C关于y轴的对称点C′,连接AC,AC′,PC,PC′,PA.

    ∵A,C关于原点对称,,
    ∴,
    ∵,
    当时,
    ∴,
    ∴,
    ∴a=5或(舍弃),
    当点P在点A的左侧时,同法可得a=1,
    ∴满足条件的a的范围为或.
    【点睛】
    本题属于反比例函数与一次函数的综合问题,熟练掌握待定系数法解函数解析式以及交点坐标的求法是解决本题的关键.
    19、(1)见解析;(2)见解析;(3).
    【解析】
    (1)根据P(m,n)移到P(m+6,n+1)可知△ABC向右平移6个单位,向上平移了一个单位,由图形平移的性质即可得出点A1,B1,C1的坐标,再顺次连接即可;
    (2)根据图形旋转的性质画出旋转后的图形即可;
    (3)先求出BC长,再利用扇形面积公式,列式计算即可得解.
    【详解】
    解:(1)平移△ABC得到△A1B1C1,点P(m,n)移到P(m+6,n+1)处,
    ∴△ABC向右平移6个单位,向上平移了一个单位,
    ∴A1(4,4),B1(2,0),C1(8,1);
    顺次连接A1,B1,C1三点得到所求的△A1B1C1

    (2)如图所示:△A2B2C即为所求三角形.

    (3)BC的长为:
    BC扫过的面积
    【点睛】
    本题考查了利用旋转变换作图,利用平移变换作图,比较简单,熟练掌握网格结构,准确找出对应点的位置是解题的关键.
    20、 (1)见解析;(2) 40°.
    【解析】
    (1)根据角平分线的性质可得出∠BCD=∠ECD,由DE∥BC可得出∠EDC=∠BCD,进而可得出∠EDC=∠ECD,再利用等角对等边即可证出DE=CE;
    (2)由(1)可得出∠ECD=∠EDC=35°,进而可得出∠ACB=2∠ECD=70°,再根据等腰三角形的性质结合三角形内角和定理即可求出∠A的度数.
    【详解】
    (1)∵CD是∠ACB的平分线,∴∠BCD=∠ECD.
    ∵DE∥BC,∴∠EDC=∠BCD,∴∠EDC=∠ECD,∴DE=CE.
    (2)∵∠ECD=∠EDC=35°,∴∠ACB=2∠ECD=70°.
    ∵AB=AC,∴∠ABC=∠ACB=70°,∴∠A=180°﹣70°﹣70°=40°.
    【点睛】
    本题考查了等腰三角形的判定与性质、平行线的性质以及角平分线.解题的关键是:(1)根据平行线的性质结合角平分线的性质找出∠EDC=∠ECD;(2)利用角平分线的性质结合等腰三角形的性质求出∠ACB=∠ABC=70°.
    21、(4)A高中观点.4. 446;(4)456人;(4).
    【解析】
    试题分析:(4)全班人数乘以选择“A高中”观点的百分比即可得到选择“A高中”观点的人数,用460°乘以选择“A高中”观点的百分比即可得到选择“A高中”的观点所在扇形区域的圆心角的度数;
    (4)用全校初三年级学生数乘以选择“B中技”观点的百分比即可估计该校初三学生选择“中技”观点的人数;
    (4)先计算出该班选择“就业”观点的人数为4人,则可判断有4位女同学和4位男生选择“就业”观点,再列表展示44种等可能的结果数,找出出现4女的结果数,然后根据概率公式求解.
    试题解析:(4)该班学生选择A高中观点的人数最多,共有60%×50=4(人),在扇形统计图中,该观点所在扇形区域的圆心角是60%×460°=446°;
    (4)∵800×44%=456(人),
    ∴估计该校初三学生选择“中技”观点的人数约是456人;
    (4)该班选择“就业”观点的人数=50×(4-60%-44%)=50×8%=4(人),则该班有4位女同学和4位男生选择“就业”观点,
    列表如下:

    共有44种等可能的结果数,其中出现4女的情况共有4种.
    所以恰好选到4位女同学的概率=.
    考点:4.列表法与树状图法;4.用样本估计总体;4.扇形统计图.
    22、(1)详见解析;(2)1+
    【解析】
    (1)连接OD,结合切线的性质和直径所对的圆周角性质,利用等量代换求解(2)根据勾股定理先求OC,再求AC.
    【详解】
    (1)证明:连结.如图,
    与相切于点D,


    是的直径,





    (2)解:在中,
    .

    【点睛】
    此题重点考查学生对圆的认识,熟练掌握圆的性质是解题的关键.
    23、∵平分平分,

    在与中,



    【解析】
    分析:根据角平分线性质和已知求出∠ACB=∠DBC,根据ASA推出△ABC≌△DCB,根据全等三角形的性质推出即可.
    解答:证明:∵AC平分∠BCD,BC平分∠ABC,
    ∴∠DBC=∠ABC,∠ACB=∠DCB,
    ∵∠ABC=∠DCB,
    ∴∠ACB=∠DBC,
    ∵在△ABC与△DCB中,

    ∴△ABC≌△DCB,
    ∴AB=DC.
    24、(1)证明见解析;(2) ;
    【解析】
    (1)根据正方形的性质得到∠GAD=∠EAB,证明△GAD≌△EAB,根据全等三角形的性质证明;(2)根据正方形的性质得到BD⊥AC,AC=BD=5,根据勾股定理计算即可.
    【详解】
    (1)在△GAD和△EAB中,∠GAD=90°+∠EAD,∠EAB=90°+∠EAD,
    ∴∠GAD=∠EAB,
    在△GAD和△EAB中,,
    ∴△GAD≌△EAB,
    ∴EB=GD;
    (2)∵四边形ABCD是正方形,AB=5,
    ∴BD⊥AC,AC=BD=5,
    ∴∠DOG=90°,OA=OD=BD=,
    ∵AG=2 ,
    ∴OG=OA+AG=,
    由勾股定理得,GD==,
    ∴EB=.
    【点睛】
    本题考查的是正方形的性质、全等三角形的判定和性质,掌握正方形的对角线相等、垂直且互相平分是解题的关键.

    相关试卷

    2023年安徽省阜阳市十校联盟中考数学模拟试卷(含解析):

    这是一份2023年安徽省阜阳市十校联盟中考数学模拟试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    安徽省桐城实验中学2021-2022学年中考数学模拟精编试卷含解析:

    这是一份安徽省桐城实验中学2021-2022学年中考数学模拟精编试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,如图,AB∥CD,那么,方程x2﹣3x=0的根是等内容,欢迎下载使用。

    安徽亳州刘桥中学2021-2022学年中考数学模拟精编试卷含解析:

    这是一份安徽亳州刘桥中学2021-2022学年中考数学模拟精编试卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,点A等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map