2022届广西崇左市扶绥县重点达标名校中考试题猜想数学试卷含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.已知A(x1,y1),B(x2,y2)是反比例函数y=(k≠0)图象上的两个点,当x1<x2<0时,y1>y2,那么一次函数y=kx-k的图象不经过( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
2.如图是由4个相同的正方体搭成的几何体,则其俯视图是( )
A. B. C. D.
3.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是( )
A.10,15 B.13,15 C.13,20 D.15,15
4.等腰三角形两边长分别是2 cm和5 cm,则这个三角形周长是( )
A.9 cm B.12 cm C.9 cm或12 cm D.14 cm
5.下列因式分解正确的是( )
A.x2+9=(x+3)2 B.a2+2a+4=(a+2)2
C.a3-4a2=a2(a-4) D.1-4x2=(1+4x)(1-4x)
6.如果代数式有意义,则实数x的取值范围是( )
A.x≥﹣3 B.x≠0 C.x≥﹣3且x≠0 D.x≥3
7.把边长相等的正六边形ABCDEF和正五边形GHCDL的CD边重合,按照如图所示的方式叠放在一起,延长LG交AF于点P,则∠APG=( )
A.141° B.144° C.147° D.150°
8.下列计算中,错误的是( )
A.; B.; C.; D..
9.如图是一个由正方体和一个正四棱锥组成的立体图形,它的主视图是( )
A. B. C. D.
10.在,,则的值为( )
A. B. C. D.
11.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )
A. B.
C. D.
12.郑州某中学在备考2018河南中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:
成绩(单位:米)
2.10
2.20
2.25
2.30
2.35
2.40
2.45
2.50
人数
2
3
2
4
5
2
1
1
则下列叙述正确的是( )
A.这些运动员成绩的众数是 5
B.这些运动员成绩的中位数是 2.30
C.这些运动员的平均成绩是 2.25
D.这些运动员成绩的方差是 0.0725
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,AB是⊙O的直径,CD是弦,CD⊥AB于点E,若⊙O的半径是5,CD=8,则AE=______.
14.如图,小强和小华共同站在路灯下,小强的身高EF=1.8m,小华的身高MN=1.5m,他们的影子恰巧等于自己的身高,即BF=1.8m,CN=1.5m,且两人相距4.7m,则路灯AD的高度是___.
15.若式子在实数范围内有意义,则x的取值范围是_______.
16.观察以下一列数:3,,,,,…则第20个数是_____.
17.如图,两个三角形相似,AD=2,AE=3,EC=1,则BD=_____.
18.点A(﹣3,y1),B(2,y2),C(3,y3)在抛物线y=2x2﹣4x+c上,则y1,y2,y3的大小关系是_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,某市郊外景区内一条笔直的公路a经过三个景点A、B、C,景区管委会又开发了风景优美的景点D,经测量,景点D位于景点A的北偏东30′方向8km处,位于景点B的正北方向,还位于景点C的北偏西75°方向上,已知AB=5km.景区管委会准备由景点D向公路a修建一条距离最短的公路,不考试其他因素,求出这条公路的长.(结果精确到0.1km).求景点C与景点D之间的距离.(结果精确到1km).
20.(6分)如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.
求证:DP是⊙O的切线;若⊙O的半径为3cm,求图中阴影部分的面积.
21.(6分)如图1,抛物线y=ax2+bx﹣2与x轴交于点A(﹣1,0),B(4,0)两点,与y轴交于点C,经过点B的直线交y轴于点E(0,2).
(1)求该抛物线的解析式;
(2)如图2,过点A作BE的平行线交抛物线于另一点D,点P是抛物线上位于线段AD下方的一个动点,连结PA,EA,ED,PD,求四边形EAPD面积的最大值;
(3)如图3,连结AC,将△AOC绕点O逆时针方向旋转,记旋转中的三角形为△A′OC′,在旋转过程中,直线OC′与直线BE交于点Q,若△BOQ为等腰三角形,请直接写出点Q的坐标.
22.(8分)某地铁站口的垂直截图如图所示,已知∠A=30°,∠ABC=75°,AB=BC=4米,求C点到地面AD的距离(结果保留根号).
23.(8分)如图,对称轴为直线x=的抛物线经过点A(6,0)和B(0,4).
(1)求抛物线解析式及顶点坐标;
(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;
(3)①当四边形OEAF的面积为24时,请判断OEAF是否为菱形?
②是否存在点E,使四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.
24.(10分)今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x元.请解答以下问题:
(1)填空:每天可售出书 本(用含x的代数式表示);
(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?
25.(10分)如图,已知:AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D,E是AB延长线上一点,CE交⊙O于点F,连接OC、AC.
(1)求证:AC平分∠DAO.
(2)若∠DAO=105°,∠E=30°
①求∠OCE的度数;
②若⊙O的半径为2,求线段EF的长.
26.(12分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线.交BC于点E.求证:BE=EC填空:①若∠B=30°,AC=2,则DE=______;
②当∠B=______度时,以O,D,E,C为顶点的四边形是正方形.
27.(12分)先化简,再求值:(x﹣3)÷(﹣1),其中x=﹣1.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
试题分析:当x1<x2<0时,y1>y2,可判定k>0,所以﹣k<0,即可判定一次函数y=kx﹣k的图象经过第一、三、四象限,所以不经过第二象限,故答案选B.
考点:反比例函数图象上点的坐标特征;一次函数图象与系数的关系.
2、A
【解析】
试题分析:从上面看是一行3个正方形.
故选A
考点:三视图
3、D
【解析】
将五个答题数,从小打到排列,5个数中间的就是中位数,出现次数最多的是众数.
【详解】
将这五个答题数排序为:10,13,15,15,20,由此可得中位数是15,众数是15,故选D.
【点睛】
本题考查中位数和众数的概念,熟记概念即可快速解答.
4、B
【解析】当腰长是2 cm时,因为2+2<5,不符合三角形的三边关系,排除;当腰长是5 cm时,因为5+5>2,符合三角形三边关系,此时周长是12 cm.故选B.
5、C
【解析】
试题分析:A、B无法进行因式分解;C正确;D、原式=(1+2x)(1-2x)
故选C,考点:因式分解
【详解】
请在此输入详解!
6、C
【解析】
根据二次根式有意义和分式有意义的条件列出不等式,解不等式即可.
【详解】
由题意得,x+3≥0,x≠0,
解得x≥−3且x≠0,
故选C.
【点睛】
本题考查分式有意义条件,二次根式有意义的条件,熟练掌握相关知识是解题的关键.
7、B
【解析】
先根据多边形的内角和公式分别求得正六边形和正五边形的每一个内角的度数,再根据多边形的内角和公式求得∠APG的度数.
【详解】
(6﹣2)×180°÷6=120°,
(5﹣2)×180°÷5=108°,
∠APG=(6﹣2)×180°﹣120°×3﹣108°×2
=720°﹣360°﹣216°
=144°,
故选B.
【点睛】
本题考查了多边形内角与外角,关键是熟悉多边形内角和定理:(n﹣2)•180 (n≥3)且n为整数).
8、B
【解析】
分析:根据零指数幂、有理数的乘方、分数指数幂及负整数指数幂的意义作答即可.
详解:A.,故A正确;
B.,故B错误;
C..故C正确;
D.,故D正确;
故选B.
点睛:本题考查了零指数幂、有理数的乘方、分数指数幂及负整数指数幂的意义,需熟练掌握且区分清楚,才不容易出错.
9、A
【解析】
对一个物体,在正面进行正投影得到的由前向后观察物体的视图,叫做主视图.
【详解】
解:由主视图的定义可知A选项中的图形为该立体图形的主视图,故选择A.
【点睛】
本题考查了三视图的概念.
10、A
【解析】
本题可以利用锐角三角函数的定义求解即可.
【详解】
解:tanA=,
∵AC=2BC,
∴tanA=.
故选:A.
【点睛】
本题考查了正切函数的概念,掌握直角三角形中角的对边与邻边的比是关键 .
11、B
【解析】
分析:根据轴对称图形与中心对称图形的概念求解即可.
详解:A.是轴对称图形,不是中心对称图形;
B.是轴对称图形,也是中心对称图形;
C.是轴对称图形,不是中心对称图形;
D.是轴对称图形,不是中心对称图形.
故选B.
点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.
12、B
【解析】
根据方差、平均数、中位数和众数的计算公式和定义分别对每一项进行分析,即可得出答案.
【详解】
由表格中数据可得:
A、这些运动员成绩的众数是2.35,错误;
B、这些运动员成绩的中位数是2.30,正确;
C、这些运动员的平均成绩是 2.30,错误;
D、这些运动员成绩的方差不是0.0725,错误;
故选B.
【点睛】
考查了方差、平均数、中位数和众数,熟练掌握定义和计算公式是本题的关键,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、2
【解析】
连接OC,由垂径定理知,点E是CD的中点,在直角△OCE中,利用勾股定理即可得到关于半径的方程,求得圆半径即可
【详解】
设AE为x,
连接OC,
∵AB是⊙O的直径,弦CD⊥AB于点E,CD=8,
∴∠CEO=90°,CE=DE=4,
由勾股定理得:OC2=CE2+OE2,
52=42+(5-x)2,
解得:x=2,
则AE是2,
故答案为:2
【点睛】
此题考查垂径定理和勾股定理,,解题的关键是利用勾股定理求关于半径的方程.
14、4m
【解析】
设路灯的高度为x(m),根据题意可得△BEF∽△BAD,再利用相似三角形的对应边正比例整理得DF=x﹣1.8,同理可得DN=x﹣1.5,因为两人相距4.7m,可得到关于x的一元一次方程,然后求解方程即可.
【详解】
设路灯的高度为x(m),
∵EF∥AD,
∴△BEF∽△BAD,
∴,
即,
解得:DF=x﹣1.8,
∵MN∥AD,
∴△CMN∽△CAD,
∴,
即,
解得:DN=x﹣1.5,
∵两人相距4.7m,
∴FD+ND=4.7,
∴x﹣1.8+x﹣1.5=4.7,
解得:x=4m,
答:路灯AD的高度是4m.
15、x≠﹣1
【解析】
分式有意义的条件是分母不等于零.
【详解】
∵式子在实数范围内有意义,
∴x+1≠0,解得:x≠-1.
故答案是:x≠-1.
【点睛】
考查的是分式有意义的条件,掌握分式有意义的条件是解题的关键.
16、
【解析】
观察已知数列得到一般性规律,写出第20个数即可.
【详解】
解:观察数列得:第n个数为,则第20个数是.
故答案为.
【点睛】
本题考查了规律型:数字的变化类,弄清题中的规律是解答本题的关键.
17、1
【解析】
根据相似三角形的对应边的比相等列出比例式,计算即可.
【详解】
∵△ADE∽△ACB,∴=,即=,
解得:BD=1.
故答案为1.
【点睛】
本题考查的是相似三角形的性质,掌握相似三角形的对应边的比相等是解题的关键.
18、y2<y3<y1
【解析】
把点的坐标分别代入抛物线解析式可分别求得y1、y2、y3的值,比较可求得答案.
【详解】
∵y=2x2-4x+c,
∴当x=-3时,y1=2×(-3)2-4×(-3)+c=30+c,
当x=2时,y2=2×22-4×2+c=c,
当x=3时,y3=2×32-4×3+c=6+c,
∵c<6+c<30+c,
∴y2<y3<y1,
故答案为y2<y3<y1.
【点睛】
本题主要考查二次函数图象上点的坐标特征,掌握函数图象上点的坐标满足函数解析式是解题的关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)景点D向公路a修建的这条公路的长约是3.1km;(2)景点C与景点D之间的距离约为4km.
【解析】
解:(1)如图,过点D作DE⊥AC于点E,
过点A作AF⊥DB,交DB的延长线于点F,在Rt△DAF中,∠ADF=30°,
∴AF=AD=×8=4,∴DF=,
在Rt△ABF中BF==3,
∴BD=DF﹣BF=4﹣3,sin∠ABF=,
在Rt△DBE中,sin∠DBE=,∵∠ABF=∠DBE,∴sin∠DBE=,
∴DE=BD•sin∠DBE=×(4﹣3)=≈3.1(km),
∴景点D向公路a修建的这条公路的长约是3.1km;
(2)由题意可知∠CDB=75°,
由(1)可知sin∠DBE==0.8,所以∠DBE=53°,
∴∠DCB=180°﹣75°﹣53°=52°,
在Rt△DCE中,sin∠DCE=,∴DC=≈4(km),
∴景点C与景点D之间的距离约为4km.
20、(1)证明见解析;(2).
【解析】
(1)连接OD,求出∠AOD,求出∠DOB,求出∠ODP,根据切线判定推出即可.
(2)求出OP、DP长,分别求出扇形DOB和△ODP面积,即可求出答案.
【详解】
解:(1)证明:连接OD,
∵∠ACD=60°,
∴由圆周角定理得:∠AOD=2∠ACD=120°.
∴∠DOP=180°﹣120°=60°.
∵∠APD=30°,
∴∠ODP=180°﹣30°﹣60°=90°.
∴OD⊥DP.
∵OD为半径,
∴DP是⊙O切线.
(2)∵∠ODP=90°,∠P=30°,OD=3cm,
∴OP=6cm,由勾股定理得:DP=3cm.
∴图中阴影部分的面积
21、(1)y=x2﹣x﹣2;(2)9;(3)Q坐标为(﹣)或(4﹣)或(2,1)或(4+,﹣).
【解析】
试题分析:把点代入抛物线,求出的值即可.
先用待定系数法求出直线BE的解析式,进而求得直线AD的解析式,设则表示出,用配方法求出它的最大值,
联立方程求出点的坐标, 最大值=,
进而计算四边形EAPD面积的最大值;
分两种情况进行讨论即可.
试题解析:(1)∵在抛物线上,
∴
解得
∴抛物线的解析式为
(2)过点P作轴交AD于点G,
∵
∴直线BE的解析式为
∵AD∥BE,设直线AD的解析式为 代入,可得
∴直线AD的解析式为
设则
则
∴当x=1时,PG的值最大,最大值为2,
由 解得 或
∴
∴ 最大值=
∵AD∥BE,
∴
∴S四边形APDE最大=S△ADP最大+
(3)①如图3﹣1中,当时,作于T.
∵
∴
∴
∴
可得
②如图3﹣2中,当时,
当时,
当时,Q3
综上所述,满足条件点点Q坐标为或或或
22、C点到地面AD的距离为:(2+2)m.
【解析】
直接构造直角三角形,再利用锐角三角函数关系得出BE,CF的长,进而得出答案.
【详解】
过点B作BE⊥AD于E,作BF∥AD,过C作CF⊥BF于F,
在Rt△ABE中,∵∠A=30°,AB=4m,
∴BE=2m,
由题意可得:BF∥AD,
则∠FBA=∠A=30°,
在Rt△CBF中,
∵∠ABC=75°,
∴∠CBF=45°,
∵BC=4m,
∴CF=sin45°•BC=
∴C点到地面AD的距离为:
【点睛】
考查解直角三角形,熟练掌握锐角三角函数是解题的关键.
23、(1)抛物线解析式为,顶点为;(2),1<<1;(3)①四边形是菱形;②不存在,理由见解析
【解析】
(1)已知了抛物线的对称轴解析式,可用顶点式二次函数通式来设抛物线,然后将A、B两点坐标代入求解即可.
(2)平行四边形的面积为三角形OEA面积的2倍,因此可根据E点的横坐标,用抛物线的解析式求出E点的纵坐标,那么E点纵坐标的绝对值即为△OAE的高,由此可根据三角形的面积公式得出△AOE的面积与x的函数关系式进而可得出S与x的函数关系式.
(3)①将S=24代入S,x的函数关系式中求出x的值,即可得出E点的坐标和OE,OA的长;如果平行四边形OEAF是菱形,则需满足平行四边形相邻两边的长相等,据此可判断出四边形OEAF是否为菱形.
②如果四边形OEAF是正方形,那么三角形OEA应该是等腰直角三角形,即E点的坐标为(3,﹣3)将其代入抛物线的解析式中即可判断出是否存在符合条件的E点.
【详解】
(1)由抛物线的对称轴是,可设解析式为.
把A、B两点坐标代入上式,得
解之,得
故抛物线解析式为,顶点为
(2)∵点在抛物线上,位于第四象限,且坐标适合
,
∴y<0,即-y>0,-y表示点E到OA的距离.
∵OA是的对角线,
∴.
因为抛物线与轴的两个交点是(1,0)的(1,0),所以,自变量的
取值范围是1<<1.
(3)①根据题意,当S = 24时,即.
化简,得解之,得
故所求的点E有两个,分别为E1(3,-4),E2(4,-4).
点E1(3,-4)满足OE = AE,所以是菱形;
点E2(4,-4)不满足OE = AE,所以不是菱形.
②当OA⊥EF,且OA = EF时,是正方形,
此时点E的坐标只能是(3,-3).
而坐标为(3,-3)的点不在抛物线上,
故不存在这样的点E,使为正方形.
24、(1)(300﹣10x).(2)每本书应涨价5元.
【解析】
试题分析:(1)每本涨价1元,则每天就会少售出10本,设每本书上涨了x元,则每天就会少售出10x本,所以每天可售出书(300﹣10x)本;(2)根据每本图书的利润×每天销售图书的数量=总利润列出方程,解方程即可求解.
试题解析:
(1)∵每本书上涨了x元,
∴每天可售出书(300﹣10x)本.
故答案为300﹣10x.
(2)设每本书上涨了x元(x≤10),
根据题意得:(40﹣30+x)(300﹣10x)=3750,
整理,得:x2﹣20x+75=0,
解得:x1=5,x2=15(不合题意,舍去).
答:若书店想每天获得3750元的利润,每本书应涨价5元.
25、(1)证明见解析;(2)①∠OCE=45°;②EF =-2.
【解析】
【试题分析】(1)根据直线与⊙O相切的性质,得OC⊥CD.
又因为AD⊥CD,根据同一平面内,垂直于同一条直线的两条直线也平行,得:AD//OC. ∠DAC=∠OCA.又因为OC=OA,根据等边对等角,得∠OAC=∠OCA.等量代换得:∠DAC=∠OAC.根据角平分线的定义得:AC平分∠DAO.
(2)①因为 AD//OC,∠DAO=105°,根据两直线平行,同位角相等得,∠EOC=∠DAO=105°,在 中,∠E=30°,利用内角和定理,得:∠OCE=45°.
②作OG⊥CE于点G,根据垂径定理可得FG=CG, 因为OC=,∠OCE=45°.等腰直角三角形的斜边是腰长的 倍,得CG=OG=2. FG=2.在Rt△OGE中,∠E=30°,得GE=, 则EF=GE-FG=-2.
【试题解析】
(1)∵直线与⊙O相切,∴OC⊥CD.
又∵AD⊥CD,∴AD//OC.
∴∠DAC=∠OCA.
又∵OC=OA,∴∠OAC=∠OCA.
∴∠DAC=∠OAC.
∴AC平分∠DAO.
(2)解:①∵AD//OC,∠DAO=105°,∴∠EOC=∠DAO=105°
∵∠E=30°,∴∠OCE=45°.
②作OG⊥CE于点G,可得FG=CG
∵OC=,∠OCE=45°.∴CG=OG=2.
∴FG=2.
∵在Rt△OGE中,∠E=30°,∴GE=.
∴EF=GE-FG=-2.
【方法点睛】本题目是一道圆的综合题目,涉及到圆的切线的性质,平行线的性质及判定,三角形内角和,垂径定理,难度为中等.
26、(1)见解析;(2)①3;②1.
【解析】
(1)证出EC为⊙O的切线;由切线长定理得出EC=ED,再求得EB=ED,即可得出结论;
(2)①由含30°角的直角三角形的性质得出AB,由勾股定理求出BC,再由直角三角形斜边上的中线性质即可得出DE;
②由等腰三角形的性质,得到∠ODA=∠A=1°,于是∠DOC=90°然后根据有一组邻边相等的矩形是正方形,即可得到结论.
【详解】
(1)证明:连接DO.
∵∠ACB=90°,AC为直径,
∴EC为⊙O的切线;
又∵ED也为⊙O的切线,
∴EC=ED,
又∵∠EDO=90°,
∴∠BDE+∠ADO=90°,
∴∠BDE+∠A=90°
又∵∠B+∠A=90°,
∴∠BDE=∠B,
∴BE=ED,
∴BE=EC;
(2)解:①∵∠ACB=90°,∠B=30°,AC=2,
∴AB=2AC=4,
∴BC==6,
∵AC为直径,
∴∠BDC=∠ADC=90°,
由(1)得:BE=EC,
∴DE=BC=3,
故答案为3;
②当∠B=1°时,四边形ODEC是正方形,理由如下:
∵∠ACB=90°,
∴∠A=1°,
∵OA=OD,
∴∠ADO=1°,
∴∠AOD=90°,
∴∠DOC=90°,
∵∠ODE=90°,
∴四边形DECO是矩形,
∵OD=OC,
∴矩形DECO是正方形.
故答案为1.
【点睛】
本题考查了圆的切线性质、解直角三角形的知识、切线长定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
27、﹣x+1,2.
【解析】
先将括号内的分式通分,再将乘方转化为乘法,约分,最后代入数值求解即可.
【详解】
原式=(x﹣2)÷(﹣)
=(x﹣2)÷
=(x﹣2)•
=﹣x+1,
当x=﹣1时,原式=1+1=2.
【点睛】
本题考查了整式的混合运算-化简求值,解题的关键是熟练的掌握整式的混合运算法则.
2023年广西崇左市扶绥县中考数学二模试卷(含解析): 这是一份2023年广西崇左市扶绥县中考数学二模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022年云南省易门县重点达标名校中考试题猜想数学试卷含解析: 这是一份2022年云南省易门县重点达标名校中考试题猜想数学试卷含解析,共20页。试卷主要包含了答题时请按要求用笔,下列说法正确的是等内容,欢迎下载使用。
2022年江苏省大丰市重点达标名校中考试题猜想数学试卷含解析: 这是一份2022年江苏省大丰市重点达标名校中考试题猜想数学试卷含解析,共19页。试卷主要包含了估计5﹣的值应在等内容,欢迎下载使用。