|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022届甘肃省兰州市西固区桃园中学中考适应性考试数学试题含解析
    立即下载
    加入资料篮
    2022届甘肃省兰州市西固区桃园中学中考适应性考试数学试题含解析01
    2022届甘肃省兰州市西固区桃园中学中考适应性考试数学试题含解析02
    2022届甘肃省兰州市西固区桃园中学中考适应性考试数学试题含解析03
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届甘肃省兰州市西固区桃园中学中考适应性考试数学试题含解析

    展开
    这是一份2022届甘肃省兰州市西固区桃园中学中考适应性考试数学试题含解析,共19页。试卷主要包含了一组数据等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,将△ABC 绕点C顺时针旋转,使点B落在AB边上点B′处,此时,点A的对应点 A′恰好落在 BC 边的延长线上,下列结论错误的是( )

    A.∠BCB′=∠ACA′ B.∠ACB=2∠B
    C.∠B′CA=∠B′AC D.B′C 平分∠BB′A′
    2.把不等式组的解集表示在数轴上,正确的是(  )
    A. B.
    C. D.
    3.如图,一把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADE=125°,则∠DBC的度数为( )

    A.125° B.75° C.65° D.55°
    4.正方形ABCD在直角坐标系中的位置如图所示,将正方形ABCD绕点A按顺时针方向旋转180°后,C点的坐标是( )

    A.(2,0) B.(3,0) C.(2,-1) D.(2,1)
    5.如图,△ABC中,∠B=70°,则∠BAC=30°,将△ABC绕点C顺时针旋转得△EDC.当点B的对应点D恰好落在AC上时,∠CAE的度数是(  )

    A.30° B.40° C.50° D.60°
    6.一组数据:6,3,4,5,7的平均数和中位数分别是 ( )
    A.5,5 B.5,6 C.6,5 D.6,6
    7.若点A(1,a)和点B(4,b)在直线y=-2x+m上,则a与b的大小关系是(  )
    A.a>b B.a<b
    C.a=b D.与m的值有关
    8.若正比例函数y=kx的图象上一点(除原点外)到x轴的距离与到y轴的距离之比为3,且y值随着x值的增大而减小,则k的值为(  )
    A.﹣ B.﹣3 C. D.3
    9.若代数式,,则M与N的大小关系是( )
    A. B. C. D.
    10.罚球是篮球比赛中得分的一个组成部分,罚球命中率的高低对篮球比赛的结果影响很大.如图是对某球员罚球训练时命中情况的统计:

    下面三个推断:①当罚球次数是500时,该球员命中次数是411,所以“罚球命中”的概率是0.822;②随着罚球次数的增加,“罚球命中”的频率总在0.812附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.812;③由于该球员“罚球命中”的频率的平均值是0.1,所以“罚球命中”的概率是0.1.其中合理的是( )
    A.① B.② C.①③ D.②③
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图所示,D、E之间要挖建一条直线隧道,为计算隧道长度,工程人员在线段AD和AE上选择了测量点B,C,已知测得AD=100,AE=200,AB=40,AC=20,BC=30,则通过计算可得DE长为_____.

    12.如图,在△ABC中,AB=BC,∠ABC=110°,AB的垂直平分线DE交AC于点D,连接BD,则∠ABD= ___________°.

    13.如图,以AB为直径的半圆沿弦BC折叠后,AB与相交于点D.若,则∠B=________°.

    14.如图,已知圆柱底面的周长为,圆柱高为,在圆柱的侧面上,过点和点嵌有一圈金属丝,则这圈金属丝的周长最小为______.

    15.如图,这是由边长为1的等边三角形摆出的一系列图形,按这种方式摆下去,则第n个图形的周长是___.

    16.化简: =____.
    三、解答题(共8题,共72分)
    17.(8分)计算:﹣22+(π﹣2018)0﹣2sin60°+|1﹣|
    18.(8分)在矩形中,点在上,,⊥,垂足为.求证.若,且,求.

    19.(8分)小明遇到这样一个问题:已知:. 求证:.
    经过思考,小明的证明过程如下:
    ∵,∴.∴.接下来,小明想:若把带入一元二次方程(a0),恰好得到.这说明一元二次方程有根,且一个根是.所以,根据一元二次方程根的判别式的知识易证:.
    根据上面的解题经验,小明模仿上面的题目自己编了一道类似的题目:
    已知:. 求证:.请你参考上面的方法,写出小明所编题目的证明过程.
    20.(8分)我们把两条中线互相垂直的三角形称为“中垂三角形”.例如图1,图2,图1中,AF,BE是△ABC的中线,AF⊥BE,垂足为P,像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.
    特例探索
    (1)如图1,当∠ABE=45°,c=时,a= ,b= ;
    如图2,当∠ABE=10°,c=4时,a= ,b= ;

    归纳证明
    (2)请你观察(1)中的计算结果,猜想a2,b2,c2三者之间的关系,用等式表示出来,请利用图1证明你发现的关系式;
    拓展应用
    (1)如图4,在□ABCD中,点E,F,G分别是AD,BC,CD的中点,BE⊥EG,AD=,AB=1.求AF的长.

    21.(8分)桌面上放有4张卡片,正面分别标有数字1,2,3,4,这些卡片除数字外完全相同.把这些卡片反面朝上洗匀后放在桌面上,甲从中任意抽出一张,记下卡片上的数字后仍放反面朝上放回洗匀,乙从中任意抽出一张,记下卡片上的数字,然后将这两数相加.
    (1)请用列表或画树状图的方法求两数和为5的概率;
    (2)若甲与乙按上述方式做游戏,当两数之和为5时,甲胜;反之则乙胜;若甲胜一次得12分,那么乙胜一次得多少分,才能使这个游戏对双方公平?
    22.(10分)某中学为了提高学生的消防意识,举行了消防知识竞赛,所有参赛学生分别设有一、二、三等奖和纪念奖,获奖情况已绘制成如图所示的两幅不完整的统计图,根据图中所经信息解答下列问题:
    (1)这次知识竞赛共有多少名学生?
    (2)“二等奖”对应的扇形圆心角度数,并将条形统计图补充完整;
    (3)小华参加了此次的知识竞赛,请你帮他求出获得“一等奖或二等奖”的概率.

    23.(12分)如图,某人站在楼顶观测对面的笔直的旗杆AB,已知观测点C到旗杆的距离CE=8m,测得旗杆的顶部A的仰角∠ECA=30°,旗杆底部B的俯角∠ECB=45°,求旗杆AB的髙.

    24.如图 1,在平面直角坐标系中,O 是坐标原点,长方形 OACB 的顶点 A、B 分别在 x 轴与 y 轴上,已知 OA=6,OB=1.点 D 为 y 轴上一点,其坐标为(0,2), 点 P 从点 A 出发以每秒 2 个单位的速度沿线段 AC﹣CB 的方向运动,当点 P 与点 B 重合 时停止运动,运动时间为 t 秒.
    (1)当点 P 经过点 C 时,求直线 DP 的函数解析式;
    (2)如图②,把长方形沿着 OP 折叠,点 B 的对应点 B′恰好落在 AC 边上,求点 P 的坐标.
    (3)点 P 在运动过程中是否存在使△BDP 为等腰三角形?若存在,请求出点 P 的坐标;若 不存在,请说明理由.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    根据旋转的性质求解即可.
    【详解】
    解:根据旋转的性质,A:∠与∠均为旋转角,故∠=∠,故A正确;
    B:,,

    ,

    ,故B正确;
    D:,
    B′C平分∠BB′A′,故D正确.
    无法得出C中结论,
    故答案:C.
    【点睛】
    本题主要考查三角形旋转后具有的性质,注意灵活运用各条件
    2、A
    【解析】
    分别求出各个不等式的解集,再求出这些解集的公共部分并在数轴上表示出来即可.
    【详解】

    由①,得x≥2,
    由②,得x<1,
    所以不等式组的解集是:2≤x<1.
    不等式组的解集在数轴上表示为:

    故选A.
    【点睛】
    本题考查的是解一元一次不等式组.熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
    3、D
    【解析】
    延长CB,根据平行线的性质求得∠1的度数,则∠DBC即可求得.
    【详解】
    延长CB,延长CB,
    ∵AD∥CB,
    ∴∠1=∠ADE=145,
    ∴∠DBC=180−∠1=180−125=55.
    故答案选:D.
    【点睛】
    本题考查的知识点是平行线的性质,解题的关键是熟练的掌握平行线的性质.
    4、B
    【解析】
    试题分析:正方形ABCD绕点A顺时针方向旋转180°后,C点的对应点与C一定关于A对称,A是对称点连线的中点,据此即可求解.
    试题解析:AC=2,
    则正方形ABCD绕点A顺时针方向旋转180°后C的对应点设是C′,则AC′=AC=2,
    则OC′=3,
    故C′的坐标是(3,0).
    故选B.
    考点:坐标与图形变化-旋转.
    5、C
    【解析】
    由三角形内角和定理可得∠ACB=80°,由旋转的性质可得AC=CE,∠ACE=∠ACB=80°,由等腰的性质可得∠CAE=∠AEC=50°.
    【详解】
    ∵∠B=70°,∠BAC=30°
    ∴∠ACB=80°
    ∵将△ABC绕点C顺时针旋转得△EDC.
    ∴AC=CE,∠ACE=∠ACB=80°
    ∴∠CAE=∠AEC=50°
    故选C.
    【点睛】
    本题考查了旋转的性质,等腰三角形的性质,熟练运用旋转的性质是本题的关键.
    6、A
    【解析】
    试题分析:根据平均数的定义列式计算,再根据找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数解答.
    平均数为:×(6+3+4+1+7)=1,
    按照从小到大的顺序排列为:3,4,1,6,7,所以,中位数为:1.
    故选A.
    考点:中位数;算术平均数.
    7、A
    【解析】
    【分析】根据一次函数性质:中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.由-2<0得,当x12时,y1>y2.
    【详解】因为,点A(1,a)和点B(4,b)在直线y=-2x+m上,-2<0,
    所以,y随x的增大而减小.
    因为,1<4,
    所以,a>b.
    故选A
    【点睛】本题考核知识点:一次函数性质. 解题关键点:判断一次函数中y与x的大小关系,关键看k的符号.
    8、B
    【解析】
    设该点的坐标为(a,b),则|b|=1|a|,利用一次函数图象上的点的坐标特征可得出k=±1,再利用正比例函数的性质可得出k=-1,此题得解.
    【详解】
    设该点的坐标为(a,b),则|b|=1|a|,
    ∵点(a,b)在正比例函数y=kx的图象上,
    ∴k=±1.
    又∵y值随着x值的增大而减小,
    ∴k=﹣1.
    故选:B.
    【点睛】
    本题考查了一次函数图象上点的坐标特征以及正比例函数的性质,利用一次函数图象上点的坐标特征,找出k=±1是解题的关键.
    9、C
    【解析】
    ∵,
    ∴,
    ∴.
    故选C.
    10、B
    【解析】
    根据图形和各个小题的说法可以判断是否正确,从而解答本题
    【详解】
    当罚球次数是500时,该球员命中次数是411,所以此时“罚球命中”的频率是:411÷500=0.822,但“罚球命中”的概率不一定是0.822,故①错误;
    随着罚球次数的增加,“罚球命中”的频率总在0.2附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.2.故②正确;
    虽然该球员“罚球命中”的频率的平均值是0.1,但是“罚球命中”的概率不是0.1,故③错误.
    故选:B.
    【点睛】
    此题考查了频数和频率的意义,解题的关键在于利用频率估计概率.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、1.
    【解析】
    先根据相似三角形的判定得出△ABC∽△AED,再利用相似三角形的性质解答即可.
    【详解】


    又∵∠A=∠A,
    ∴△ABC∽△AED,

    ∵BC=30,
    ∴DE=1,
    故答案为1.
    【点睛】
    考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.
    12、1
    【解析】
    ∵在△ABC中,AB=BC,∠ABC=110°, 
    ∴∠A=∠C=1°, 
    ∵AB的垂直平分线DE交AC于点D, 
    ∴AD=BD, 
    ∴∠ABD=∠A=1°;
    故答案是1.
    13、18°
    【解析】
    由折叠的性质可得∠ABC=∠CBD,根据在同圆和等圆中,相等的圆周角所对的弧相等可得,再由和半圆的弧度为180°可得 的度数×5=180°,即可求得的度数为36°,再由同弧所对的圆周角的度数为其弧度的一半可得∠B=18°.
    【详解】
    解:由折叠的性质可得∠ABC=∠CBD,
    ∴,
    ∵,
    ∴的度数+ 的度数+ 的度数=180°,
    即的度数×5=180°,
    ∴的度数为36°,
    ∴∠B=18°.
    故答案为:18.
    【点睛】
    本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等. 还考查了圆弧的度数与圆周角之间的关系.
    14、
    【解析】
    要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.
    【详解】
    解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.
    ∵圆柱底面的周长为4dm,圆柱高为2dm,
    ∴AB=2dm,BC=BC′=2dm,
    ∴AC2=22+22=8,
    ∴AC=2dm.
    ∴这圈金属丝的周长最小为2AC=4dm.
    故答案为:4dm
    【点睛】
    本题考查了平面展开-最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题把圆柱的侧面展开成矩形,“化曲面为平面”是解题的关键.
    15、2n+1
    【解析】
    观察摆放的一系列图形,可得到依次的周长分别是3,4,5,6,7,…,从中得到规律,根据规律写出第n个图形的周长.
    解:由已知一系列图形观察图形依次的周长分别是:
    (1)2+1=3,
    (2)2+2=4,
    (3)2+3=5,
    (4)2+4=6,
    (5)2+5=7,
    …,
    所以第n个图形的周长为:2+n.
    故答案为2+n.
    此题考查的是图形数字的变化类问题,关键是通过观察分析得出规律,根据规律求解.
    16、
    【解析】
    先利用除法法则变形,约分后通分并利用同分母分式的减法法则计算即可.
    【详解】
    原式,
    故答案为
    【点睛】
    本题考查了分式的混合运算,熟练掌握运算法则是解题的关键.

    三、解答题(共8题,共72分)
    17、-4
    【解析】
    分析:第一项根据乘方的意义计算,第二项非零数的零次幂等于1,第三项根据特殊角锐角三角函数值计算,第四项根据绝对值的意义化简.
    详解:原式=-4+1-2×+-1=-4
    点睛:本题考查了实数的运算,熟练掌握乘方的意义,零指数幂的意义,及特殊角锐角三角函数,绝对值的意义是解答本题的关键.
    18、(1)证明见解析;(2)1
    【解析】
    分析:(1)利用“AAS”证△ADF≌△EAB即可得;
    (2)由∠ADF+∠FDC=90°、∠DAF+∠ADF=90°得∠FDC=∠DAF=30°,据此知AD=2DF,根据DF=AB可得答案.
    详解:(1)证明:在矩形ABCD中,∵AD∥BC,
    ∴∠AEB=∠DAF,
    又∵DF⊥AE,
    ∴∠DFA=90°,
    ∴∠DFA=∠B,
    又∵AD=EA,
    ∴△ADF≌△EAB,
    ∴DF=AB.
    (2)∵∠ADF+∠FDC=90°,∠DAF+∠ADF=90°,
    ∴∠FDC=∠DAF=30°,
    ∴AD=2DF,
    ∵DF=AB,
    ∴AD=2AB=1.
    点睛:本题主要考查矩形的性质,解题的关键是掌握矩形的性质和全等三角形的判定与性质及直角三角形的性质.
    19、证明见解析
    【解析】
    解:∵,∴.∴.
    ∴是一元二次方程的根.
    ∴,∴.
    20、(1)2,2;2,2;(2)+=5;(1)AF=2.
    【解析】
    试题分析:(1)∵AF⊥BE,∠ABE=25°,∴AP=BP=AB=2,∵AF,BE是△ABC的中线,∴EF∥AB,EF=AB=,∴∠PFE=∠PEF=25°,∴PE=PF=1,在Rt△FPB和Rt△PEA中,AE=BF==,∴AC=BC=2,∴a=b=2,如图2,连接EF,同理可得:EF=×2=2,∵EF∥AB,∴△PEF~△ABP,∴,在Rt△ABP中,AB=2,∠ABP=10°,∴AP=2,PB=2,∴PF=1,PE=,在Rt△APE和Rt△BPF中,AE=,BF=,∴a=2,b=2,故答案为2,2,2,2;
    (2)猜想:a2+b2=5c2,如图1,连接EF,设∠ABP=α,∴AP=csinα,PB=ccosα,由(1)同理可得,PF=PA=,PE==,AE2=AP2+PE2=c2sin2α+,BF2=PB2+PF2=+c2cos2α,∴=c2sin2α+,=+c2cos2α,∴+=+c2cos2α+c2sin2α+,∴a2+b2=5c2;
    (1)如图2,连接AC,EF交于H,AC与BE交于点Q,设BE与AF的交点为P,∵点E、G分别是AD,CD的中点,∴EG∥AC,∵BE⊥EG,∴BE⊥AC,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=2,∴∠EAH=∠FCH,∵E,F分别是AD,BC的中点,∴AE=AD,BF=BC,∴AE=BF=CF=AD=,∵AE∥BF,∴四边形ABFE是平行四边形,∴EF=AB=1,AP=PF,在△AEH和△CFH中,,∴△AEH≌△CFH,∴EH=FH,∴EQ,AH分别是△AFE的中线,由(2)的结论得:AF2+EF2=5AE2,∴AF2=5﹣EF2=16,∴AF=2.

    考点:相似形综合题.
    21、(1)详见解析;(2)4分.
    【解析】
    (1)根据题意用列表法求出答案;
    (2)算出甲乙获胜的概率,从而求出乙胜一次的得分.
    【详解】
    (1)列表如下:
    由列表可得:P(数字之和为5)=,
    (2)因为P(甲胜)=,P(乙胜)=,∴甲胜一次得12分,要使这个游戏对双方公平,乙胜一次得分应为:12÷3=4分.
    【点睛】
    本题考查概率问题中的公平性问题,解决本题的关键是计算出各种情况的概率,然后比较即可.
    22、 (1)200;(2)72°,作图见解析;(3).
    【解析】
    (1)用一等奖的人数除以所占的百分比求出总人数;
    (2)用总人数乘以二等奖的人数所占的百分比求出二等奖的人数,补全统计图,再用360°乘以二等奖的人数所占的百分比即可求出“二等奖”对应的扇形圆心角度数;
    (3)用获得一等奖和二等奖的人数除以总人数即可得出答案.
    【详解】
    解:(1)这次知识竞赛共有学生=200(名);
    (2)二等奖的人数是:200×(1﹣10%﹣24%﹣46%)=40(人),
    补图如下:

    “二等奖”对应的扇形圆心角度数是:360°×=72°;
    (3)小华获得“一等奖或二等奖”的概率是: =.
    【点睛】
    本题主要考查了条形统计图以及扇形统计图,利用统计图获取信息是解本题的关键.
    23、 (8+8)m.
    【解析】
    利用∠ECA的正切值可求得AE;利用∠ECB的正切值可求得BE,由AB=AE+BE可得答案.
    【详解】
    在Rt△EBC中,有BE=EC×tan45°=8m,
    在Rt△AEC中,有AE=EC×tan30°=8m,
    ∴AB=8+8(m).
    【点睛】
    本题考查了解直角三角形的应用-俯角、仰角问题,要求学生能借助其关系构造直角三角形并解直角三角形.
    24、(1)y=x+2;(2)y=x+2;(2)①S=﹣2t+16,②点P的坐标是(,1);(3)存在,满足题意的P坐标为(6,6)或(6,2+2)或(6,1﹣2).
    【解析】
    分析:(1)设直线DP解析式为y=kx+b,将D与B坐标代入求出k与b的值,即可确定出解析式;
    (2)①当P在AC段时,三角形ODP底OD与高为固定值,求出此时面积;当P在BC段时,底边OD为固定值,表示出高,即可列出S与t的关系式;
    ②设P(m,1),则PB=PB′=m,根据勾股定理求出m的值,求出此时P坐标即可;
    (3)存在,分别以BD,DP,BP为底边三种情况考虑,利用勾股定理及图形与坐标性质求出P坐标即可.
    详解:(1)如图1,

    ∵OA=6,OB=1,四边形OACB为长方形,
    ∴C(6,1).
    设此时直线DP解析式为y=kx+b,
    把(0,2),C(6,1)分别代入,得
    ,解得
    则此时直线DP解析式为y=x+2;
    (2)①当点P在线段AC上时,OD=2,高为6,S=6;
    当点P在线段BC上时,OD=2,高为6+1﹣2t=16﹣2t,S=×2×(16﹣2t)=﹣2t+16;
    ②设P(m,1),则PB=PB′=m,如图2,

    ∵OB′=OB=1,OA=6,
    ∴AB′==8,
    ∴B′C=1﹣8=2,
    ∵PC=6﹣m,
    ∴m2=22+(6﹣m)2,解得m=
    则此时点P的坐标是(,1);
    (3)存在,理由为:
    若△BDP为等腰三角形,分三种情况考虑:如图3,

    ①当BD=BP1=OB﹣OD=1﹣2=8,
    在Rt△BCP1中,BP1=8,BC=6,
    根据勾股定理得:CP1==2,
    ∴AP1=1﹣2,即P1(6,1﹣2);
    ②当BP2=DP2时,此时P2(6,6);
    ③当DB=DP3=8时,
    在Rt△DEP3中,DE=6,
    根据勾股定理得:P3E==2,
    ∴AP3=AE+EP3=2+2,即P3(6,2+2),
    综上,满足题意的P坐标为(6,6)或(6,2+2)或(6,1﹣2).
    点睛:此题属于一次函数综合题,涉及的知识有:待定系数法确定一次函数解析式,坐标与图形性质,等腰三角形的性质,勾股定理,利用了分类讨论的思想,熟练掌握待定系数法是解本题第一问的关键.

    相关试卷

    甘肃省兰州市西固区桃园中学2023-2024学年数学九年级第一学期期末学业水平测试模拟试题含答案: 这是一份甘肃省兰州市西固区桃园中学2023-2024学年数学九年级第一学期期末学业水平测试模拟试题含答案,共7页。

    甘肃省兰州市西固区桃园中学2023-2024学年数学八上期末预测试题含答案: 这是一份甘肃省兰州市西固区桃园中学2023-2024学年数学八上期末预测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    2022-2023学年甘肃省兰州市西固区桃园中学七年级数学第二学期期末经典模拟试题含答案: 这是一份2022-2023学年甘肃省兰州市西固区桃园中学七年级数学第二学期期末经典模拟试题含答案,共7页。试卷主要包含了在函数中的取值范围是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map